This contribution will redound to the benefit of electrophysiological investigations of human cells. Especially the spatial and temporal analysis of neural network communications is improved by using the proposed spike detection algorithms.
Purpose: Magnetic particle imaging (MPI) is a preclinical imaging technique capable of visualizing the spatio-temporal distribution of magnetic nanoparticles. The image reconstruction of this fast and dynamic process relies on efficiently solving an ill-posed inverse problem. Current approaches to reconstruct the tracer concentration from its measurements are either adapted to image characteristics of MPI but suffer from higher computational complexity and slower convergence or are fast but lack in the image quality of the reconstructed images. Methods: In this work we propose a novel MPI reconstruction method to combine the advantages of both approaches into a single algorithm. The underlying sparsity prior is based on an undecimated wavelet transform and is integrated into a fast row-action framework to solve the corresponding MPI minimization problem. Results: Its performance is numerically evaluated against a classical FISTA (Fast Iterative Shrinkage-Thresholding Algorithm) approach on simulated and real MPI data. The experimental results show that the proposed method increases image quality with significantly reduced computation times. Conclusions: In comparison to state-of-the-art MPI reconstruction methods, our approach shows better reconstruction results and at the same time accelerates the convergence rate of the underlying row-action algorithm.
Microelectrode array (MEA) technology in combination with three-dimensional (3D) neuronal cell models derived from human embryonic stem cells (hESC) provide an excellent tool for neurotoxicity screening. Yet, there are significant challenges in terms of data processing and analysis, since neuronal signals have very small amplitudes and the 3D structure enhances the level of background noise. Thus, neuronal signal analysis requires the application of highly sophisticated algorithms. In this study, we present a new approach optimized for the detection of spikes recorded from 3D neurospheres (NS) with a very low signal-to-noise ratio. This was achieved by extending simple threshold-based spike detection utilizing a highly sensitive algorithm named SWTTEO. This analysis procedure was applied to data obtained from hESC-derived NS grown on MEA chips. Specifically, we examined changes in the activity pattern occurring within the first ten days of electrical activity. We further analyzed the response of NS to the GABA receptor antagonist bicuculline. With this new algorithm method we obtained more reliable results compared to the simple threshold-based spike detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.