By embedding silver nanoparticles (Ag NPs) of approximately 20 nm diameter inside the intrinsic layer of thin hydrogenated amorphous silicon (a-Si:H) n-i-p devices, a photocurrent is measured for photon energies below the a-Si:H bandgap. This is attributed to the excitation of charge carriers from defect states created by the incorporation of the Ag inside the silicon network. The defect location inside the strong electromagnetic fields close to the resonant absorbing NPs enables high transition rates. This is a proof of concept for the use of the impurity photovoltaic effect in a-Si:H devices.
The use of silicon wafer substrates with a diameter of 300 mm for the manufacturing of electronic devices strongly increases the overall productivity of a device manufacturing line. However, float‐zone (FZ) silicon, which is traditionally used for insulated gate bipolar transistors (IGBTs), is not available for wafer diameters exceeding 200 mm. Therefore, a silicon material fabricated by the magnetic Czochralski (m:Cz) method has to be used for IGBT production on 300 mm wafers. Critical issues of this material are the so‐called crystal originated particles (COPs) and the strong axial variation of the doping level along the crystal. Furthermore, the m:Cz material contains a relatively high concentration of oxygen so that the influence of carbon/oxygen complexes has to be considered. CIOI complexes can be decorated with hydrogen atoms, resulting in donor‐like complexes. In particular, the application of proton irradiation for the doping of the field‐stop zone results in a relatively high concentration of interstitial carbon, which is continuatively associated with the generation of undesired donors. It is shown that the electrical behavior of IGBTs fabricated on FZ substrates can be well reproduced using the m:Cz material if the parameters of the hydrogen implantation are adjusted appropriately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.