A folic acid sensor was prepared via an electropolymerized molecularly imprinted polymer (E-MIP) film of a bis-terthiophene dendron on a quartz crystal microbalance (QCM). The cyclic voltammetry (CV) electrodeposition of the imprinted polymer film was monitored by electrochemical QCM or E-QCM, enabling in situ monitoring and characterization of E-MIP film formation and the viscoelastic behavior of the film. A key component of the E-MIP process is the use of a bifunctional monomer design to precomplex with the template and function as a cross-linker. The complex was electropolymerized and cross-linked by CV to form a polythiophene matrix. Stable cavities were formed that specifically fit the size and shape of the folic acid template. The same substrate surface was used for folic acid sensing. The predicted geometry of the 1:2 folic acid/terthiophene complex was obtained through semiempirical AM1 quantum calculations. The analytical performance, expressed through the figures of merit, of the sensor in aqueous solutions of the analyte was investigated. A relatively good linearity, R(2) = 0.985, was obtained within the concentration range 0-100 μM folic acid. The detection limit was found to be equal to 15.4 μM (6.8 μg). The relative cross selectivity of the folic acid imprinted polymer against the three molecules follows this trend: pteroic acid (= 50%) > caffeine (= 41%) > theophylline (= 6%). The potential and limitations of the E-MIP method were also discussed.
Bisphenol A (BPA) sensing was investigated based on electrochemical impedance spectroscopy (EIS) measurements of an electropolymerized molecularly imprinted polymer (E-MIP) film. The E-MIP film is composed of varying ratios of BPA–terthiophene and carbazole monomer complex deposited onto indium tin oxide (ITO) substrates via anodic electropolymerization using cyclic voltammetry (CV). Subsequently, the interfacial properties of these films were studied using the non-Faradaic EIS technique. The same technique was then used to measure the presence of templated BPA which is a known endocrine disrupting chemical (EDC). Analyses of the EIS results were performed using equivalent circuits in order to model the electrical and impedance properties through the interface. A linear calibration curve was established in the range 0–12 mM concentrations of the analyte. Moreover, the selectivity of the films against bisphenol AF and diphenolic acid was demonstrated. The E-MIP sensor may have advantages in environmental monitoring of bisphenol A in aqueous analyte/pollutant samples.
A 2-D molecularly imprinted monolayer (2-D MIM) approach was used to prepare a simple and robust sensor for nitroaromatic compounds with 2,4-dinitrotoluene (DNT) as the model compound, which is a precursor and analog for explosive 2,4,6-trinitrotoluene (TNT). In contrast to studies utilizing long-chain hexadecylmercaptan self-assembled monolayers (SAM)s for sensing, a shorter-chain alkylthiol (i.e., butanethiol SAM) was utilized for DNT detection. The role of the chain length of the coadsorbed alkylthiol was emphasized with a matched template during solution adsorption. Semiempirical PM3 quantum calculations were used to determine the molecular conformation and complexation of the adsorbates. A switching mechanism was invoked on the basis of the ability of the template analyte to alter the packing arrangement of the alkylthiol SAMs near defect sites as influenced by the DNT-ethanol solvent complex. A 2-D MIM was formed on the Au surface electrode of a quartz crystal microbalance (QCM), which was then used to sense various concentrations of the analyte. Interestingly, the 2-D MIM QCM also enabled the selective detection of DNT even in a mixed solution of competing molecules, demonstrating the selectivity figure of merit. Likewise, electrochemical impedance spectroscopy (EIS) data at different concentrations of DNT confirmed the 2-D MIM effectiveness for sensing based on the interfacial conformation and electron-transport properties of the imprinted butanethiol SAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.