In this work, we propose a novel design of a planar CPW lowpass “LPF” filter based on the use of periodic structures. The periodic cells are formed from a rectangular slot repeated periodically. The originality of this work is to develop a new LPF structure which is simple, low cost for fabrication and easy to associate with others microwave planar circuits. The proposed and validated LPF is a compact planar filter structure. The final circuit is simulated and optimized by using two electromagnetic solvers, ADS (Advanced Design System) and HFSS (High Frequency Structural Simulator). After many series of optimization we have validated the final circuit into simulation by using optimization methods integrated into the both solvers, taking into account a high density of meshing in order to cover the whole circuit. The fabricated LPF circuit shows good agreement between simulation and measurement results in term of matching input impedance and insertion loss with a cutoff frequency of 1.25GHz. The entire area of the proposed LPF is 35x31 mm<sup>2</sup>.
A novel CPW Low pass filter structure using square complementary split ring resonator (CSRRs) is presented in this work. The CSRRs are etched periodically in each ground plane of the CPW line which permit to suppress the spurious response. The low pass filter shows a good rejection in the stop band. The cutoff frequency at-3dB is equal to fc = 5.28GHz. This filter has total area of 35.48x21.16 mm 2 .
In this paper, we present a novel coplanar waveguide low pass filter (LPF) structure based on the use of square complementary split ring resonators (CSRRs) in order to enhance the performances of a low pass filter. Especially, to enlarge the bandwidth of the LPF, the insertion losses and to increase the rejection of the LPF. The CSRRs are optimised and inserted periodically along the center conductor of the CPW line with a CPW ground integrating stubs permitting to enlarge the bandwidth. The simulation results of this filter show a -3 dB cut-off frequency equal to fc = 5.28 GHz. The designed filter has a good rejection in the stop band which below -20 dB and presents a good insertion loss in the bandwidth. The proposed filter has been fabricated and tested which give a good agreement between simulation and measurement results, the whole dimensions of the validated filter are 35.48x21.16 mm 2 . The originality of this work is the wide rejection band and the miniature dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.