ObjectivesTo assess the feasibility and clinical efficacy of local field potentials (LFPs)–based adaptive deep brain stimulation (aDBS) in patients with advanced Parkinson disease (PD) during daily activities in an open-label, nonblinded study.MethodsWe monitored neurophysiologic and clinical fluctuations during 2 perioperative experimental sessions lasting for up to 8 hours. On the first day, the patient took his/her daily medication, while on the second, he/she additionally underwent subthalamic nucleus aDBS driven by LFPs beta band power.ResultsThe beta band power correlated in both experimental sessions with the patient's clinical state (Pearson correlation coefficient r = 0.506, p < 0.001, and r = 0.477, p < 0.001). aDBS after LFP changes was effective (30% improvement without medication [3-way analysis of variance, interaction day × medication p = 0.036; 30.5 ± 3.4 vs 22.2 ± 3.3, p = 0.003]), safe, and well tolerated in patients performing regular daily activities and taking additional dopaminergic medication. aDBS was able to decrease DBS amplitude during motor “on” states compared to “off” states (paired t test p = 0.046), and this automatic adjustment of STN-DBS prevented dyskinesias.ConclusionsThe main findings of our study are that aDBS is technically feasible in everyday life and provides a safe, well-tolerated, and effective treatment method for the management of clinical fluctuations.Classification of evidenceThis study provides Class IV evidence that for patients with advanced PD, aDBS is safe, well tolerated, and effective in controlling PD motor symptoms.
The future of deep brain stimulation (DBS) for Parkinson’s disease (PD) lies in new closed-loop systems that continuously\ud supply the implanted stimulator with new settings obtained by analyzing a feedback signal related to the patient’s current\ud clinical condition
Transcranial direct current stimulation (tDCS) is a non-invasive technique for inducing prolonged functional changes in the human cerebral cortex. This simple and safe neurostimulation technique for modulating motor functions in Parkinson's disease could extend treatment option for patients with movement disorders. We assessed whether tDCS applied daily over the cerebellum (cerebellar tDCS) and motor cortex (M1-tDCS) improves motor and cognitive symptoms and levodopa-induced dyskinesias in patients with Parkinson's disease (PD). Nine patients (aged 60-85 years; four women; Hoehn & Yahr scale score 2-3) diagnosed as having idiopathic PD were recruited. To evaluate how tDCS (cerebellar tDCS or M1-tDCS) affects motor and cognitive function in PD, we delivered bilateral anodal (2 mA, 20 min, five consecutive days) and sham tDCS, in random order, in three separate experimental sessions held at least 1 month apart. In each session, as outcome variables, patients underwent the Unified Parkinson's Disease Rating Scale (UPDRS III and IV) and cognitive testing before treatment (baseline), when treatment ended on day 5 (T1), 1 week later (T2), and then 4 weeks later (T3), at the same time each day. After patients received anodal cerebellar tDCS and M1-tDCS for five days, the UPDRS IV (dyskinesias section) improved (p < 0.001). Conversely, sham tDCS, cerebellar tDCS, and M1-tDCS left the other variables studied unchanged (p > 0.05). Despite the small sample size, our preliminary results show that anodal tDCS applied for five consecutive days over the motor cortical areas and cerebellum improves parkinsonian patients' levodopa-induced dyskinesias.
We proved an empathic impairment, with the ability to infer emotional states showing the most severe deficit. These results provide further evidence of selective disease-specific vulnerability of the limbic and frontoinsular network in bvFTD and highlight the usefulness of empathy assessment in early patients.
Although clinically distinguishable, migraine and cluster headache share prominent features such as unilateral pain, common pharmacological triggers such glyceryl trinitrate, histamine, calcitonin gene-related peptide (CGRP) and response to triptans and neuromodulation. Recent data also suggest efficacy of anti CGRP monoclonal antibodies in both migraine and cluster headache. While exact mechanisms behind both disorders remain to be fully understood, the trigeminovascular system represents one possible common pathophysiological pathway and network of both disorders. Here, we review past and current literature shedding light on similarities and differences in phenotype, heritability, pathophysiology, imaging findings and treatment options of migraine and cluster headache. A continued focus on their shared pathophysiological pathways may be important in paving future treatment avenues that could benefit both migraine and cluster headache patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.