We provide a pedagogical review on the calculation of highly excited eigenstates of disordered interacting quantum systems which can undergo a many-body localization (MBL) transition, using shift-invert exact diagonalization. We also provide an example code at https://bitbucket.org/dluitz/sinvert mbl. Through a detailed analysis of the simulational parameters of the random field Heisenberg spin chain, we provide a practical guide on how to perform efficient computations. We present data for mid-spectrum eigenstates of spin chains of sizes up to L = 26. This work is also geared towards readers with interest in efficiency of parallel sparse linear algebra techniques that will find a challenging application in the MBL problem.Contents arXiv:1803.05395v3 [cond-mat.dis-nn]
In this paper we analyze the predictions of the forward approximation in some models which exhibit an Anderson (single-) or many-body localized phase. This approximation, which consists in summing over the amplitudes of only the shortest paths in the locator expansion, is known to over-estimate the critical value of the disorder which determines the onset of the localized phase. Nevertheless, the results provided by the approximation become more and more accurate as the local coordination (dimensionality) of the graph, defined by the hopping matrix, is made larger. In this sense, the forward approximation can be regarded as a mean field theory for the Anderson transition in infinite dimensions. The sum can be efficiently computed using transfer matrix techniques, and the results are compared with the most precise exact diagonalization results available.For the Anderson problem, we find a critical value of the disorder which is 0.9% off the most precise available numerical value already in 5 spatial dimensions, while for the many-body localized phase of the Heisenberg model with random fields the critical disorder hc = 4.0 ± 0.3 is strikingly close to the most recent results obtained by exact diagonalization. In both cases we obtain a critical exponent ν = 1. In the Anderson case, the latter does not show dependence on the dimensionality, as it is common within mean field approximations.We discuss the relevance of the correlations between the shortest paths for both the single-and many-body problems, and comment on the connections of our results with the problem of directed polymers in random medium.
The phenomenon of many-body localization in disordered quantum many-body systems occurs when all transport is suppressed despite the fact that the excitations of the system interact. In this work we report on the numerical simulation of autonomous quantum dynamics for disordered Heisenberg chains when the system is prepared with an initial inhomogeneity in the energy density profile. Using exact diagonalisation and a dynamical code based on Krylov subspaces we are able to simulate dynamics for up to L = 26 spins. We find, surprisingly, the breakdown of energy diffusion even before the many-body localization transition whilst the system is still in the ergodic phase. Moreover, in the ergodic phase we also find a large region in parameter space where the energy dynamics remains diffusive but where spin transport has been previously evidenced to occur only subdiffusively: this is found to be true for initial states composed of infinitely many hydrodynamic modes (square-wave energy profile) or just the single longest mode (sinusoidal profile). This suggestive finding points towards a peculiar ergodic phase where particles are transported slower than energy, reminiscent of the situation in amorphous solids and of the gapped phase of the anisotropic Heisenberg model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.