Parkinson’s disease (PD) patients, besides motor dysfunctions, may also display mild cognitive deficits (MCI) which increase with disease progression. The neurotrophin brain-derived neurotrophic factor (BDNF) plays a role in the survival of dopaminergic neurons and in the regulation of synaptic connectivity. Moreover, the brain and peripheral level of this protein may be significantly reduced in PD patients. These data suggest that a cognitive rehabilitation protocol aimed at restoring cognitive deficits in PD patients may also involve changes in this neurotrophin. Thus, in this pilot study we evaluated the effect of a cognitive rehabilitation protocol focused on the training of executive functioning and measured BDNF serum levels in a group of PD patients with mild cognitive impairment, as compared to the effect of a placebo treatment (n = 7/8 group). The results showed that PD patients undergoing the cognitive rehabilitation, besides improving their cognitive performance as measured with the Zoo Map Test, also displayed increased serum BDNF levels as compared to the placebo group. These findings suggest that BDNF serum levels may represent a biomarker of the effects of cognitive rehabilitation in PD patients affected by MCI. However, the functional significance of this increase in PD as well as other neuropathological conditions remains to be determined.
This study investigated the effect of cognitive training aimed at improving shifting ability on Parkinson's disease (PD) patients' performance of prospective memory (PM) tasks. Using a double-blind protocol, 17 PD patients were randomly assigned to two experimental arms. In the first arm (n = 9) shifting training was administered, and in the second (placebo) arm (n = 8), language and respiratory exercises. Both treatments consisted of 12 sessions executed over 4 weeks. PM and shifting measures (i.e., Trail Making Test and Alternate Fluency Test) were administered at T0 (before treatment) and T1 (immediately after treatment). A mixed analysis of variance was applied to the data. To evaluate the effects of treatment, the key effect was the interaction between Group (experimental vs. placebo) and Time of Assessment (T0 vs. T1). This interaction was significant for the accuracy indices of the PM procedure (p < .05) and for the performance parameters of the shifting tasks (p ≤ .05). Tukey's HSD tests showed that in all cases passing from T0 to T1 performance significantly improved in the experimental group (in all cases p ≤ .02) but remained unchanged in the placebo group (all p consistently > .10). The performance change passing from T0 to T1 on the Alternate Fluency test and the PM procedure was significantly correlated (p < .05). Results show that the cognitive training significantly improved PD patients' event-based PM performance and suggest that their poor PM functioning might be related to reduced shifting abilities. (JINS, 2014, 20, 717-726)
PD patients with MCI (both single and multiple domains) showed lower accuracy on all PM conditions than both HC and PDNC patients. This was predicted by their scores on shifting indices. Conversely, PM accuracy of PDNC patients was comparable to HCs. Regression analyses revealed that PD patients' PM performance significantly predicted scores on daily living scales Conclusions: Results suggest that PM efficiency is not tout-court reduced in PD patients, but it specifically depends on the presence of MCI. Moreover, decreased executive functioning, but not episodic memory failure, accounts for a significant proportion of variance in PM performance. Finally, PM accuracy indices were found to be associated with measures of global daily living functioning and management of medication.
Objective: Prospective memory (PM), that is, the ability to keep in memory and carry out intentions in the future, is reported to be impaired in individuals with Parkinson’s disease (PD). PM failure may be also associated with reduced daily living functioning in these patients. Little is known, however, about the relationship between mild cognitive impairment (MCI) and time-based PM functioning in PD patients and the possible impact of PM deficits on patients’ autonomy in daily living. Here we aimed to investigate whether MCI associated with PD affects time-based PM. We also wished to determine whether PM impairment accounts for reduced autonomous management of medication in these patients.Method: The study included 48 PD patients with MCI, 33 PD patients without cognitive disorders (PDN) and 20 healthy controls. The time-based PM procedure required that subjects perform an action after a fixed time. The PM procedure was incorporated in the standard neuropsychological assessment. One score was computed for the ability to retrieve the intention (prospective component) and one for remembering the action to be executed (retrospective component). The Pill Questionnaire was administered to assess the ability to manage medication.Results: PD patients with MCI performed less accurately in the PM procedure than HC and tended to perform poorer than PDN. Moreover, in PD patients with MCI, accuracy on the prospective component of the PM task and performance on the Modified Card Sorting Test significantly predicted the ability to manage medication.Conclusions: Results document that reduced efficiency of time-based PM processes in PD is specifically related to the presence of MCI. The same data indicate that PM weakness may be associated with impaired daily living functioning and decreased autonomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.