Chirp-pulse microwave computed tomography (CP-MCT) is a technique for imaging the distribution of temperature variations inside biological tissues. Even if resolution and contrast are adequate to this purpose, a further improvement of image quality is desirable. In this paper, we discuss the blur of CP-MCT images and we propose a method for estimating the corresponding point spread function (PSF). To this purpose we use both a measured and a computed projection of a cylindrical phantom. We find a good agreement between the two cases. Finally the estimated PSF is used for deconvolving data corresponding to various kinds of cylindrical phantoms. We use an iterative nonlinear deconvolution method which assures nonnegative solutions and we demonstrate the improvement of image quality which can be obtained in such a way.
The splitting between the charge-longitudinal and spin-transverse responses is explained in a model whose inputs are the effective interactions in the particle-hole channels in the frame of the first order boson loop expansion. It is shown that the interplay between ω-meson exchange and box diagrams (two-meson exchange with simultaneous excitation of one or two nucleons to ∆'s) mainly rules the longitudinal response, while in the transverse one the direct ∆ excitations almost cancel the one-loop correction and the response is mainly governed by the ρ-meson rescattering inside the nucleus. It is also shown that a small variation in the nuclear densities may explain the observed discrepancies between different nuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.