Recent studies show that several tree species are spreading to higher latitudes and elevations due to climate change. European beech, presently dominating from the colline to the subalpine vegetation belt, is already present in upper montane subalpine forests and has a high potential to further advance to higher elevations in European mountain forests, where the temperature is predicted to further increase in the near future. Although essential for adaptive silviculture, it remains unknown whether the upward shift of beech could be assisted when it is mixed with Norway spruce or silver fir compared with mono-specific stands, as the species interactions under such conditions are hardly known. In this study, we posed the general hypotheses that the growth depending on age of European beech in mountain forests was similar in mono-specific and mixed-species stands and remained stable over time and space in the last two centuries. The scrutiny of these hypotheses was based on increment coring of 1240 dominant beech trees in 45 plots in mono-specific stands of beech and in 46 mixed mountain forests. We found that (i) on average, mean tree diameter increased linearly with age. The age trend was linear in both forest types, but the slope of the age–growth relationship was higher in mono-specific than in mixed mountain forests. (ii) Beech growth in mono-specific stands was stronger reduced with increasing elevation than that in mixed-species stands. (iii) Beech growth in mono-specific stands was on average higher than beech growth in mixed stands. However, at elevations > 1200 m, growth of beech in mixed stands was higher than that in mono-specific stands. Differences in the growth patterns among elevation zones are less pronounced now than in the past, in both mono-specific and mixed stands. As the higher and longer persisting growth rates extend the flexibility of suitable ages or size for tree harvest and removal, the longer-lasting growth may be of special relevance for multi-aged silviculture concepts. On top of their function for structure and habitat improvement, the remaining old trees may grow more in mass and value than assumed so far.
In this study, we investigated the role of climatic variability and atmospheric nitrogen deposition in driving long-term tree growth in canopy beech trees along a geographic gradient in the montane belt of the Italian peninsula, from the Alps to the southern Apennines. We sampled dominant trees at different developmental stages (from young to mature tree cohorts, with tree ages spanning from 35 to 160 years) and used stem analysis to infer historic reconstruction of tree volume and dominant height. Annual growth volume (G ) and height (G ) variability were related to annual variability in model simulated atmospheric nitrogen deposition and site-specific climatic variables, (i.e. mean annual temperature, total annual precipitation, mean growing period temperature, total growing period precipitation, and standard precipitation evapotranspiration index) and atmospheric CO concentration, including tree cambial age among growth predictors. Generalized additive models (GAM), linear mixed-effects models (LMM), and Bayesian regression models (BRM) were independently employed to assess explanatory variables. The main results from our study were as follows: (i) tree age was the main explanatory variable for long-term growth variability; (ii) GAM, LMM, and BRM results consistently indicated climatic variables and CO effects on G and G were weak, therefore evidence of recent climatic variability influence on beech annual growth rates was limited in the montane belt of the Italian peninsula; (iii) instead, significant positive nitrogen deposition (N ) effects were repeatedly observed in G and G ; the positive effects of N on canopy height growth rates, which tended to level off at N values greater than approximately 1.0 g m y , were interpreted as positive impacts on forest stand above-ground net productivity at the selected study sites.
On the mountains, along an elevation gradient, we generally observe an ample variation in temperature, with the associated difference in vegetation structure and composition and soil properties. With the aim of quantifying the relative importance of temperature, vegetation and edaphic properties on soil respiration (SR), we investigated changes in SR along an elevation gradient (404 to 2101 m a.s.l) in the southern slopes of the Alps in Northern Italy. We also analysed soil physicochemical properties, including soil organic carbon (SOC) and nitrogen (N) stocks, fine root C and N, litter C and N, soil bulk densities and soil pH at five forest sites, and also stand structural properties, including vegetation height, age and basal area. Our results indicated that SR rates increased with temperature in all sites, and 55–76% of SR variability was explained by temperature. Annual cumulative SR, ranging between 0.65–1.40 kg C m-2 yr-1, decreased along the elevation gradient, while temperature sensitivity (Q10) of SR increased with elevation. However, a high SR rate (1.27 kg C m-2 yr-1) and low Q10 were recorded in the mature conifer forest stand at 1731 m a.s.l., characterized by an uneven-aged structure and high dominant tree height, resulting in a nonlinear relationship between elevation and temperature. Reference SR at 10°C (SRref) was unrelated to elevation, but was related to tree height. A significant negative linear relationship was found between bulk density and elevation. Conversely, SOC, root C and N stock, pH, and litter mass were best fitted by nonlinear relationships with elevation. However, these parameters were not significantly correlated with SR when the effect of temperature was removed (SRref). These results demonstrate that the main factor affecting SR in forest ecosystems along this Alpine elevation gradient is temperature, but its regulating role can be strongly influenced by site biological characteristics, particularly vegetation type and structure, affecting litter quality and microclimate. This study also confirms that high elevation sites are rich in SOC and more sensitive to climate change, being prone to high C losses as CO2. Furthermore, our data indicate a positive relationship between Q10 and dominant tree height, suggesting that mature forest ecosystems characterized by an uneven-age structure, high SRref and moderate Q10, may be more resilient.
The need to understand the carbon sequestration ability of trees under current and future climatic scenarios is fundamental to predict the role of forest in counterbalancing the global warming. In this study, we investigated the carbon sequestration ability of Pinus sylvestris L. in a setting of pure and mixed forests with Quercus petraea (Matt.) Liebl. in Central Poland. Beside the traditional growth measures, i.e., Ring Width, Basal Area Increment, and wood density, we utilized also a new Index called BAIden, which combines Basal Area Increment and mean ring wood density to depict the carbon sequestration ability of trees. Pinus sylvestris showed different sensitivity to climatic variability depending on tree admixture, while the Basal Area Increment and wood density presented few differences between pure and mixed forests. According to the BAIden index, carbon accumulation in P. sylvestris showed similar sensitivity to climatic variability in pure and mixed forests. The new index was also informative on the main climatic drivers of carbon sequestration. Considering future climatic scenarios, the carbon sequestration ability of P. sylvestris will be facilitated by rising temperatures in late winter-early spring and reduced by decreasing precipitation and rising temperatures during summer. Finally, we discussed the perspective and applicability of BAIden for further studies on carbon sequestration ability under climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.