The development of auto-antibodies against coagulation factor VIII (FVIII) is a rare event, known as acquired haemophilia A (AHA). The bleeding pattern of AHA patients can vary from superficial bruising to severe life-threatening bleeding. Delay in diagnosis and initiation of an appropriate treatment may increase morbidity. Therefore, awareness of this rare bleeding disorder is a key issue. The global incidence is subject to various estimates; the annual incidence lays between 1.3 and 1.5/million/year. 1,2 The demographic distribution shows two age peaks: older patients
Cancer patients develop a hypercoagulable state with a four- to seven-fold higher thromboembolic risk compared to non-cancer patients. Thromboembolic events can precede the diagnosis of cancer, but they more often occur at diagnosis or during treatment. After malignancy itself, they represent the second cause of death. Low molecular weight heparins are the backbone of the treatment of cancer-associated thromboembolism. This treatment paradigm is possibly changing, as direct oral anticoagulants (DOACs) may prove to be an alternative therapeutic option. The currently available DOACs were approved during the first and second decades of the 21st century for various clinical indications. Three molecules (apixaban, edoxaban and rivaroxaban) are targeting the activated factor X and one (dabigatran) is directed against the activated factor II, thrombin. The major trials analyzed the effect of these agents in the general population, with only a small proportion of cancer patients. Two published and several ongoing studies are specifically investigating the use of DOACs in cancer-associated thromboembolism. This article will review the current available literature on the use of DOACs in cancer patients. Furthermore, we will discuss published data suggesting potential anti-cancer actions exerted by non-anticoagulant effects of DOACs. As soon as more prospective data becomes available, DOACs are likely to be considered as a potential new therapeutic option in the armamentarium for patients suffering of cancer-associated thromboembolism.
Background
Early recognition and treatment of heparin‐induced thrombocytopenia (HIT) are key to prevent severe complications.
Objective
To assess the diagnostic performance of rapid immunoassays (IA) in detecting anti‐PF4/heparin‐antibodies.
Methods
Diagnostic performances of lateral‐flow IA (LFIA; STic Expert HIT) and latex IA (LIA; HemosIL HIT‐Ab) were analyzed in pilot (n = 74) and derivation cohorts (n = 267). Two novel algorithms based on the combination of HIT clinical probability with sequentially performed LIA and chemiluminescent IA (CLIA; HemosIL AcuStar‐HIT‐IgG) were compared with published rapid diagnostic algorithms: the “Lausanne algorithm” sequentially combining CLIA and particle‐gel IA (PaGIA) and the “Hamilton algorithm” based on simultaneously performed LIA and CLIA.
Results
LFIA missed 6/30 HIT. The sensitivity and specificity of LIA were 90.9% and 93.5%. The Lausanne algorithm correctly predicted HIT in 19/267 (7.1%), excluded it in 240/267 (89.9%), leaving 8/267 (3%) cases unsolved. The algorithm sequentially combining CLIA and LIA predicted HIT in 19/267 (7.1%) with 1/19 wrong prediction, excluded it in 236/267 (88.4%), leaving 11/267 (4.1%) cases unsolved. The algorithm employing LIA as a first assay predicted HIT in 22/267 (8.2%), excluded it in 235/267 (88%), leaving 9/267 (3.4%) cases unsolved. Finally, the Hamilton algorithm correctly predicted HIT in 10/267 (3.7%), excluded it in 229/267 (85.7%), leaving 28/267 (10.5%) cases unsolved.
Conclusion
LFIA cannot be used to exclude or predict HIT when using frozen plasma. A Bayesian approach sequentially employing two rapid immunoassays for anti‐PF4/heparin antibodies is most effective for the accurate diagnosis of HIT. Based on retrospective data, the combination LIA/CLIA is a candidate for a prospective validation.
Autoimmune hemolytic anemia (AIHA) is increasingly recognized as a strong risk factor for venous thrombosis. However, there are currently no guidelines on thromboembolism prevention and management during AIHA. Here, we describe the case of a patient with AIHA and pulmonary embolism and resume the current knowledge on epidemiology, risk factors, treatment, and pathophysiology of thrombosis during AIHA, as well as new therapeutic perspectives to prevent thrombus formation during AIHA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.