A panel of experts known as the POSEIDON group has recently redefined the spectrum of poor responder patients and introduced the concept of suboptimal response. Since an ideal management for these patients is still missing, they highlighted the importance of tailoring the ovarian stimulation based on the chance of each woman to obtain an euploid blastocyst. Interestingly, a novel pattern of follicle recruitment has been defined: multiple waves may arise during a single ovarian cycle. This evidence opened important clinical implications for the treatment of poor responders. For instance, double stimulation in the follicular (FPS) and luteal phase (LPS) of the same ovarian cycle (DuoStim) is an intriguing option to perform two oocyte retrievals in the shortest possible time. Here, we reported our 2-year experience of DuoStim application in four private IVF centers. To date, 310 poor prognosis patients completed a DuoStim protocol and underwent IVF with blastocyst-stage preimplantation-genetic-testing. LPS resulted into a higher mean number of oocytes collected than FPS; however, their competence (i.e., fertilization, blastocyst, euploidy rates, and clinical outcomes after euploid single-embryo-transfer) was comparable. Importantly, the rate of patients obtaining at least one euploid blastocyst increased from 42.3% (n = 131/310) after FPS to 65.5% (n = 203/310) with the contribution of LPS. A summary of the putative advantages and disadvantages of DuoStim was reported here through a Strengths–Weaknesses–Opportunities–Threats analysis. The strengths of this approach make it very promising. However, more studies are needed in the future to limit its weaknesses, shed light on its putative threats, and realize its opportunities.
The use of gonadotropin-releasing hormone antagonist COS protocols, started randomly at any day of the menstrual cycle, is today a standard procedure in those cases where obtaining oocytes is an urgent task, such as in case of fertility preservation for malignant diseases or other medical indications.On the other hand, in poor prognosis patients, double ovarian stimulation has been suggested with the aim of maximizing the number of oocytes retrieved within a single menstrual cycle and, in turn increasing the chance to obtain a reproductively competent embryo. Randomized control trials are necessary to confirm these preliminary findings.
Progesterone is the ovarian steroid produced by the granulosa cells of follicles after the LH peak at mid-cycle. Its role is to sustain embryo endometrial implantation and ongoing pregnancy. Other biological effects of progesterone may exert a protective function in supporting pregnancy up to birth. Luteal phase support (LPS) with progesterone is the standard of care for assisted reproductive technology. Progesterone vaginal administration is currently the most widely used treatment for LPS. Physicians and patients have been reluctant to change an administration route that has proven to be effective. However, some questions remain open, namely the need for LPS in fresh and frozen embryo transfer, the route of administration, the optimal duration of LPS, dosage, and the benefit of combination therapies. The aim of this review is to provide an overview of the uterine and extra-uterine effects of progesterone that may play a role in embryo implantation and pregnancy, and to discuss the advantages of the use of progesterone for LPS in the context of Good Medical Practice.
Assisted reproductive technology may influence epigenetic signature as the procedures coincide with the extensive epigenetic modification occurring from fertilization to embryo implantation. However, it is still unclear to what extent ART alters the embryo epigenome. In vivo fertilization occurs in the fallopian tube, where a specific and natural environment enables the embryo's healthy development. During this dynamic period, major waves of epigenetic reprogramming, crucial for the normal fate of the embryo, take place. Over the past decade, concerns relating to the raised incidence of epigenetic anomalies and imprinting following ART have been raised by several authors. Epigenetic reprogramming is particularly susceptible to environmental conditions during the periconceptional period; therefore, unphysiological conditions, including ovarian stimulation, in vitro fertilization, embryo culture, cryopreservation of gametes and embryos, parental lifestyle, and underlying infertility, have the potential to contribute to epigenetic dysregulation independently or collectively. This review critically
Artificial intelligence (AI) has been experiencing rapid growth in recent years, and numerous applications are improving the single-step efficiency of the whole assisted reproductive technology (ART) procedure. In this review, we collected all the algorithms supplying ART and selected those supporting the clinical assistance to the procedure up to the successful attempt. Those with a clear role in improving ART performances were further selected. We found a questionnaire-based algorithm identifying patients at risk for endometriosis with early management and better fertility outcome. An algorithm can detect the values of simple gamete production (male) and reservoir (female) according to gradual scale allocation, and display themas normal or abnormal, spontaneousor stimulated gamete production. This can provide significant benefits for infertile couples undergoing diagnostic and therapeutic journeys. The calculators for the starting dose of gonadotropins and the trigger timing during controlled ovarian stimulation make clinical management more efficient. With the application of AI in ART, the ability to determine the optimal number of metaphase II oocytes required for blastocyst formation and number of oocytes needed for embryo production has been significantly improved. The calculation of the implantation rate as proposed in different calculators, using the ultrasound of endometrial vascularization or the age and euploidy of the embryo transferred, may provide further advancement in managing the ART procedure with more participation from the couples to increase the efficacy of the procedures. Finally, the calculator of presumptive success with an ART program based on couples or medical center profiling and efficiency is of tremendous comfort to couples. In conclusion, algorithms and machine learning development in human reproduction are growing daily with evident benefits. Infertility treatments by in vitro fertilization (IVF) are assisted by several algorithms that improve the efficiency of each procedure step, making IVF program’s management more effortless.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.