BackgroundTo understand the processes of invasions by alien insects is a pre-requisite for improving management. The whitefly Bemisia tabaci is a cryptic species complex that contains some of the most invasive pests worldwide. However, extensive field data to show the geographic distribution of the members of this species complex as well as the invasion by some of its members are scarce.Methodology/Principal FindingsWe used field surveys and published data to assess the current diversity and distribution of B. tabaci cryptic species in China and relate the indigenous members to other Asian and Australian members of the complex. The survey covered the 16 provinces where indigenous B. tabaci occur and extends this with published data for the whole of China. We used molecular markers to identify cryptic species. The evolutionary relationships between the different Asian B. tabaci were reconstructed using Bayesian methods. We show that whereas in the past the exotic invader Middle East-Asia Minor 1 was predominant across China, another newer invader Mediterranean is now the dominant species in the Yangtze River Valley and eastern coastal areas, and Middle East-Asia Minor 1 is now predominant only in the south and south eastern coastal areas. Based on mtCO1 we identified four new cryptic species, and in total we have recorded 13 indigenous and two invasive species from China. Diversity was highest in the southern and southeastern provinces and declined to north and west. Only the two invasive species were found in the northern part of the country where they occur primarily in protected cropping. By 2009, indigenous species were mainly found in remote mountainous areas and were mostly absent from extensive agricultural areas.Conclusions/SignificanceInvasions by some members of the whitefly B. tabaci species complex can be rapid and widespread, and indigenous species closely related to the invaders are replaced.
Recent morphological and molecular evidence has changed interpretations of arthropod phylogeny and evolution. Here we compare complete mitochondrial genomes to show that Collembola, a wingless group traditionally considered as basal to all insects, appears instead to constitute a separate evolutionary lineage that branched much earlier than the separation of many crustaceans and insects and independently adapted to life on land. Therefore, the taxon Hexapoda, as commonly defined to include all six-legged arthropods, is not monophyletic.
The olive fly, Bactrocera oleae, is the major pest of olives in most commercial olive-growing regions worldwide. The species is abundant in the Mediterranean basin and has been introduced recently into California and Mexico, creating problems for quarantine protection and international trade. Here, we use nuclear microsatellite markers and mitochondrial sequences to examine the history of olive fly range expansion and colonization. Sampled populations span the current distribution of the olive fly worldwide, including South and Central Africa, Pakistan, Mediterranean Europe and Middle East, California, and Mexico. The Pakistani populations appear to be genetically well differentiated from the remaining populations, though rooting the origins of the species is problematic. Genetic similarity and assignment tests cluster the remaining populations into two genetic groups--Africa and a group including the Mediterranean basin and the American region. That Africa, and not the Mediterranean, is the origin of flies infesting cultivated olive is supported by the significantly greater genetic diversity at microsatellite loci in Africa relative to the Mediterranean area. The results also indicate that the recent invasion of olive flies in the American region most likely originated from the Mediterranean area.
The North-Western Mediterranean basin is well known for its high number of relictual endemic taxa, and has been indicated as one of the world's major biodiversity hotspots at the species level. A possible contributing factor may be long-term persistence of populations and their prolonged stability. This study was designed to investigate the phylogeographic structure of three common species of the genus Lepidocyrtus (Hexapoda: Collembola), soil-dwelling arthropods characterized by limited dispersal capabilities and generally associated with forest habitats. We observed a remarkable geographic structure, with numerous deeply divergent genetic lineages occupying islands as well as mainland sites with no apparent gene flow among most sites, even across distances of only tens of kilometres. The reconstructed time frame for the evolution of these lineages suggests divergence between 5 and 15 Ma. This indicates a remarkably ancient origin and long-term persistence of individual lineages over a fine geographic scale despite the occurrence of abrupt sea level and climatic fluctuations in the area. This further suggests that currently recognized morphological species might be a serious underestimation of the true springtail biodiversity within this region.
Background: The phylogeny of Arthropoda is still a matter of harsh debate among systematists, and significant disagreement exists between morphological and molecular studies. In particular, while the taxon joining hexapods and crustaceans (the Pancrustacea) is now widely accepted among zoologists, the relationships among its basal lineages, and particularly the supposed reciprocal paraphyly of Crustacea and Hexapoda, continues to represent a challenge. Several genes, as well as different molecular markers, have been used to tackle this problem in molecular phylogenetic studies, with the mitochondrial DNA being one of the molecules of choice. In this study, we have assembled the largest data set available so far for Pancrustacea, consisting of 100 complete (or almost complete) sequences of mitochondrial genomes. After removal of unalignable sequence regions and highly rearranged genomes, we used nucleotide and inferred amino acid sequences of the 13 protein coding genes to reconstruct the phylogenetic relationships among major lineages of Pancrustacea. The analysis was performed with Bayesian inference, and for the amino acid sequences a new, Pancrustacea-specific, matrix of amino acid replacement was developed and used in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.