Unilateral posterior crossbite is a widespread, asymmetric malocclusion characterized by an inverse relationship of the upper and lower buccal dental cusps, in the molar and premolar regions, on one side only of the dental arch. Patients with unilateral posterior crossbite exhibit an altered chewing cycles and the crossbite side masseter results to be less active with respect to the contralateral one. Few studies about morphological features of masticatory muscle in malocclusion disorders exist and most of these have been performed on animal models. The aim of the present study was to evaluate morphological and protein expression characteristics of masseter muscles in patients affected by unilateral posterior crossbite, by histological and immunofluorescence techniques. We have used antibody against PAX-7, marker of satellite cells, and against α-, β-, γ-, δ-, ε- and ζ-sarcoglycans which are transmembrane glycoproteins involved in sarcolemma stabilization. By statistical analysis we have evaluated differences in amount of myonucley between contralateral and ipsilateral side. Results have shown: i) altered fibers morphology and atrophy of ipsilateral muscle if compared to the contralateral one; ii) higher number of myonuclei and PAX-7 positive cells in contralateral side than ipsilateral one; iii) higher pattern of fluorescence for all tested sarcoglycans in contralateral side than ipsilateral one. Results show that in unilateral posterior crossbite hypertrophic response of contralateral masseter and atrophic events in ipsilateral masseter take place; by that, in unilateral posterior crossbite malocclusion masticatory muscles modify their morphology depending on the function. That could be relevant in understanding and healing of malocclusion disorders; in fact, the altered balance about structure and function between ipsilateral and contralateral muscles could, long-term, lead and/ or worsen skeletal asymmetries.
The sarcoglycan complex, consisting of α-, β-, γ-, δ- and ε-sarcoglycans, is a multimember transmembrane system providing a mechanosignaling connection from the cytoskeleton to the extracellular matrix. Whereas the expression of α- and γ-sarcoglycan is restricted to striated muscle, other sarcoglycans are widely expressed. Although many studies have investigated sarcoglycans in all muscle types, insufficient data are available on the distribution of the sarcoglycan complex in nonmuscle tissue. On this basis, we used immunohistochemical and RT-PCR techniques to study preliminarily the sarcoglycans in normal glandular breast tissue (which has never been studied in the literature on these proteins) to verify the effective wider distribution of this complex. Moreover, to understand the role of sarcoglycans, we also tested samples obtained from patients affected by fibrocystic mastopathy and breast fibroadenoma. Our data showed, for the first time, that all sarcoglycans are always detectable in all normal samples both in epithelial and myoepithelial cells; in pathological breast tissue, all sarcoglycans appeared severely reduced. These data demonstrated that all sarcoglycans, not only β-, δ-, and ε-sarcoglycans, have a wider distribution, implying a new unknown role for these proteins. Moreover, in breast diseases, sarcoglycans containing cadherin domain homologs could provoke a loss of strong adhesion between epithelial cells, permitting and facilitating the degeneration of these benign breast tumors into malignant tumors. Consequently, sarcoglycans could play an important and intriguing role in many breast diseases and in particular in tumor progression from benign to malignant.
We demonstrated activation of apoptosis and a critical alteration of cytoskeleton that might explain the altered function and the increased apoptosis in smooth muscle cells in ureteropelvic junction obstruction. The delayed rearrangement of the cytoskeleton of smooth muscle cells in ureteropelvic junction obstruction might be linked to a postnatal splicing from α7A and β1A to α7B and β1D integrins, respectively. This relationship could explain the common clinical scenario of spontaneous improvement of hydronephrosis in children with suspected ureteropelvic junction obstruction.
The sarcoglycan complex consists of a group of single-pass transmembrane glycoproteins that are essential to maintain the integrity of muscle membranes. Any mutation in each sarcoglycan gene causes a series of recessive autosomal dystrophin-positive muscular dystrophies. Negative fibres for sarcoglycans have never been found in healthy humans and animals. In this study, we have investigated whether the social ranking has an influence on the expression of sarcoglycans in the skeletal muscles of healthy baboons. Biopsies of masseter and sternocleidomastoid muscles were processed for confocal immunohistochemical detection of sarcoglycans. Our findings showed that baboons from different social rankings exhibited different sarcoglycan expression profiles. While in dominant baboons almost all muscles were stained for sarcoglycans, only 55% of muscle fibres showed a significant staining. This different expression pattern is likely to be due to the living conditions of these primates. Sarcoglycans which play a key role in muscle activity by controlling contractile forces may influence the phenotype of muscle fibres, thus determining an adaptation to functional conditions. We hypothesize that this intraspecies variation reflects an epigenetic modification of the muscular protein network that allows baboons to adapt progressively to a different social status.
The sarcoglycan complex is a trans-membrane system playing a key role in mechano-signaling the connection from the cytoskeleton to the extracellular matrix. While b-, d-, and e-sarcoglycans are widely distributed, g-and a-sarcoglycans are expressed exclusively in skeletal and cardiac muscle. Insufficient data are available on the distribution of sarcoglycans in nonmuscular tissue. In the present study, we used immunohistochemical and RT-PCR techniques to study the sarcoglycans also in normal human glandular tissue, a type of tissue never studied in relation to the sarcoglycan complex, with the aim of verifying the real wider distribution of this complex. To understand the role of sarcoglycans, we tested specimens collected from patients affected by benign prostatic hyperplasia and adenocarcinoma. For the first time, our results showed that all sarcoglycans are detectable in normal samples both in epithelial and in myoepithelial cells; in pathological prostate, sarcoglycans appeared severely reduced in number or were absent. These data demonstrated that all sarcoglycans have a wider distribution suggesting a new unknown role for these proteins. The decreased number of sarcoglycans, containing cadherin domain homologs in samples of prostate affected by hyperplasia, and the absence of proteins in prostate biopsies, in cases affected by adenocarcinoma, could be responsible for the loss of adhesion between epithelial cells, which in turn facilitates the progression of benign tumors and the invasive potential of malignant tumors. Anat Rec,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.