Effect of boron doping on the wear behavior of the growth and nucleation surfaces of micro-and nanocrystalline diamond films Buijnsters
CopyrightOther than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Takedown policyPlease contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. ABSTRACT: B-doped diamond has become the ultimate material for applications in the field of microelectromechanical systems (MEMS), which require both highly wear resistant and electrically conductive diamond films and microstructures. Despite the extensive research of the tribological properties of undoped diamond, to date there is very limited knowledge of the wear properties of highly B-doped diamond. Therefore, in this work a comprehensive investigation of the wear behavior of highly B-doped diamond is presented. Reciprocating sliding tests are performed on micro-and nanocrystalline diamond (MCD, NCD) films with varying B-doping levels and thicknesses. We demonstrate a linear dependency of the wear rate of the different diamond films with the B-doping level. Specifically, the wear rate increases by a factor of 3 between NCD films with 0.6 and 2.8 at. % B-doping levels. This increase in the wear rate can be linked to a 50% decrease in both hardness and elastic modulus of the highly B-doped NCD films, as determined by nanoindentation measurements. Moreover, we show that fine-grained diamond films are more prone to wear. Particularly, NCD films with a 3× smaller grain size but similar B-doping levels exhibit a double wear rate, indicating the crucial role of the grain size on the diamond film wear behavior. On the other hand, MCD films are the most wear-resistant films due to their larger grains and lower B-doping levels. We propose a graphical scheme of the wear behavior which involves planarization and mechanochemically driven amorphization of the surface to describe the wear mechanism of B-doped diamond films. Finally, the wear behavior of the nucleation surface of NCD films is investigated for the first time. In particular, the nucleation surface is shown to be susceptible to higher wear compared to the growth surface due to its higher grain boundary line density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.