It has been suggested that Chlamydia trachomatis (CT) and human papillomaviruses (HPV) co-infection could contribute to development of intraepithelial lesions. In this study, HPV and CT-DNA were investigated in 250 cervicovaginal samples of patients from Minas Gerais, Brazil. The cytological analysis revealed that 70% of samples (175) were negative, 5.2% (13) presented atypical squamous or glandular cells of undetermined significance (ASCUS/AGUS), 12.4% (31) presented low-grade squamous intraepithelial lesion (LSIL), 10.8% (27) high-grade squamous intraepithelial lesion (HSIL), and 1.6% (4) invasive carcinoma. HPV-DNA and HPV/CT co-infection was observed in 40% (100/250) and in 5.2% (13/250) of samples, respectively. Among the positive cytological samples, HPV-DNA was detected in 73.3% and CT-DNA in 9.33% and in 13%, if only the HPV positive samples were considered. The highest co-infection rate (15.4%) was observed among ASCUS/AGUS samples. Although a significant association was found for HPV infection and the precursor lesions of cervical cancer, it was not possible to establish a significant association between these lesions and CT or HPV/CT co-infection.
SUMMARYPurpose: The aim of this study was to investigate the frequency of HPV infection and the types 16 and 18 in cervical samples from patients attended at two public health services of the city of Belo Horizonte, MG. Methods: Cervical samples from 174 patients were collected for cytopathological and molecular tests. HPV infection was searched by PCR utilizing MY09 and MY11 primers or HPV 16 and HPV 18 specific primers. Results: Amongst the 174 samples analyzed, 20.7% presented squamous intraepithelial and/or invasive lesions detected on cytopathological analysis and of those, 94.4% were infected by HPV. HPV 16 was found in 20% of the cases of low-grade squamous intraepithelial lesions and in 40% and 50% of high-grade squamous intraepithelial lesion and squamous invasive carcinoma, respectively. HPV 18 was detected in 6.7% of the low-grade lesion samples and in two HPV16 co-infected samples. In 50% of the cases of high-grade lesion, the HPV type was not determined. Conclusion: The HPV 16 was the virus type more frequently detected. However, more than 50% of the positive samples at the cytopathological analysis were negative for HPV 16 and 18, indicating that possibly other virus types are present in relative high frequencies in the studied population.
IntroductionMinimal residual disease is an important independent prognostic factor that can identify poor responders among patients with acute lymphoblastic leukemia.ObjectiveThe aim of this study was to analyze minimal residual disease using immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements by conventional polymerase chain reaction followed by homo-heteroduplex analysis and to compare this with real-time polymerase chain reaction at the end of the induction period in children with acute lymphoblastic leukemia.MethodsSeventy-four patients diagnosed with acute lymphoblastic leukemia were enrolled. Minimal residual disease was evaluated by qualitative polymerase chain reaction in 57 and by both tests in 44. The Kaplan–Meier and multivariate Cox methods and the log-rank test were used for statistical analysis.ResultsNine patients (15.8%) were positive for minimal residual disease by qualitative polymerase chain reaction and 11 (25%) by real-time polymerase chain reaction considering a cut-off point of 1 × 10−3 for precursor B-cell acute lymphoblastic leukemia and 1 × 10−2 for T-cell acute lymphoblastic leukemia. Using the qualitative method, the 3.5-year leukemia-free survival was significantly higher in children negative for minimal residual disease compared to those with positive results (84.1% ± 5.6% versus 41.7% ± 17.3%, respectively; p-value = 0.004). There was no significant association between leukemia-free survival and minimal residual disease by real-time polymerase chain reaction. Minimal residual disease by qualitative polymerase chain reaction was the only variable significantly correlated to leukemia-free survival.ConclusionGiven the difficulties in the implementation of minimal residual disease monitoring by real-time polymerase chain reaction in most treatment centers in Brazil, the qualitative polymerase chain reaction strategy may be a cost-effective alternative.
ObjectiveTo detect markers for minimal residual disease monitoring based on conventional polymerase chain reaction for immunoglobulin, T-cell receptor rearrangements and the Sil-Tal1 deletion in patients with acute lymphocytic leukemia. MethodsFifty-nine children with acute lymphocytic leukemia from three institutions in Minas Gerais, Brazil, were prospectively studied. Clonal rearrangements were detected by polymerase chain reaction followed by homo/heteroduplex clonality analysis in DNA samples from diagnostic bone marrow. Follow-up samples were collected on Days 14 and 28-35 of the induction phase. The Kaplan-Meier and multivariate Cox methods were used for survival analysis. ResultsImmunoglobulin/T-cell receptor rearrangements were not detected in 5/55 children screened (9.0%). For precursor-B acute lymphocytic leukemia, the most frequent rearrangement was IgH (72.7%), then TCRG (61.4%), and TCRD and IgK (47.7%); for T-acute lymphocytic leukemia, TCRG (80.0%), and TCRD and Sil-Tal deletion (20.0%) were the most common. Minimal residual disease was detected in 35% of the cases on Day 14 and in 22.5% on Day 28-35. Minimal residual disease on Day 28-35, T-acute lymphocytic leukemia, and leukocyte count above 50 x 109/L at diagnosis were bad prognostic factors for leukemia-free survival in univariate analysis. Relapse risk for minimal residual disease positive relative to minimal residual disease negative children was 8.5 times higher (95% confidence interval: 1.02-70.7).ConclusionImmunoglobulin/T-cell receptor rearrangement frequencies were similar to those reported before. Minimal residual disease is an independent prognostic factor for leukemia-free survival, even when based on a non-quantitative technique, but longer follow-ups are needed.
Febrile neutropenia remains a frequent complication in onco-hematological patients, and changes in the circulating level of inflammatory molecules (IM) may precede the occurrence of fever. The present observational prospective study was carried out to evaluate the behavior of plasma tumor necrosis factor alpha (TNF-α), soluble TNF-α I and II receptors (sTNFRI and sTNFRII), monocyte chemoattractant protein-1 [MCP-1 or chemokine (c-c motif) ligand 2 (CCL2)], macrophage inflammatory protein-1α (MIP-1α or CCL3), eotaxin (CCL11), interleukin-8 (IL-8 or CXCL8), and interferon-inducible protein-10 (IP-10 or CXCL10) in 32 episodes of neutropenia in 26 onco-hematological patients. IM were tested on enrollment and 24-48 h before the onset of fever and within 24 h of the first occurrence of fever. Eight of 32 episodes of neutropenia did not present fever (control group) and the patients underwent IM tests on three different occasions. sTNFRI levels, measured a median of 11 h (1-15) before the onset of fever, were significantly higher in patients presenting fever during follow-up compared to controls (P = 0.02). Similar results were observed for sTNFRI and CCL2 levels (P = 0.04 for both) in non-transplanted patients. A cut-off of 1514 pg/mL for sTNFRI was able to discriminate between neutropenic patients with or without fever during follow-up, with 65% sensitivity, 87% specificity, and 93% positive predictive value. Measurement of the levels of plasma sTNFRI can be used to predict the occurrence of fever in neutropenic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.