In the Guadix-Baza Basin (Betic Cordillera) lies the Baza Fault, a structure that will be described for the first time in this paper. Eight gravity profiles and a seismic reflection profile, coupled with surface studies, indicate the existence of a NE-dipping normal fault with a variable strike with N-S and NW-SE segments. This 37-km long fault divides the basin into two sectors: Guadix to the West and Baza to the East. Since the Late Miocene, the activity of this fault has created a half-graben in its hanging wall. The seismic reflection profile shows that the fill of this 2,000-3,000 m thick asymmetric basin is syntectonic. The fault has associated seismicity, the most important of which is the 1531 Baza earthquake. Since the Late Tortonian to the present, i.e. over approximately the last 8 million years, extension rates obtained vary between 0.12 and 0.33 mm/ year for the Baza Fault, being one of the major active normal faults to accommodate the current ENE-WSW extension produced in the central Betic Cordillera. The existence of this fault and other normal faults in the central Betic Cordillera enhanced the extension in the upper crust from the Late Miocene to the present in this regional compressive setting.
The Bajo Segura Fault Zone, located at the NE end of the Eastern Betic Shear Zone, has been the site of some of the most intense seismic activity on the Iberian Peninsula in the historical and instrumental time periods. This structure is an active blind fault that does not show any surface rupture. It is characterised by a set of ENE-WSW trending blind thrust faults that offset the Triassic basement and cause active folding of the Upper Miocene-Quaternary sedimentary cover. The main active structures of this fault zone are two ENE-WSW striking reverse blind faults, the Torremendo and the Bajo Segura Faults, and several secondary NW-SE striking dextral faults (San Miguel de Salinas, Torrevieja and Guardamar Faults). These structures continue offshore to the east. From geological, geomorphological and geodetic data, we obtain fault slip rates between 0.2 and 0.4 mm/yr, whereas other authors have proposed higher values ranging between 0.75 and 1 mm/yr. The fault zone can generate earthquakes with maximum estimated magnitudes (Mw) from 6.6 to 7.1 and has approximate recurrence intervals between 4.500 and 21.500 years.
The Granada and Guadix-Baza Basins, the largest Neogene-Quaternary intramontane basins of the Betic Cordillera (southern Spain), undergo active deformation with an associated moderate level of seismic activity. This deformation is controlled by a NNW-SSE compressive regime and an approximate orthogonal tensional regime. The compression produced N70ºE to E-W folds of several scales, the Sierra Nevada antiform being the largest one. The tension is accommodated mainly by NW-SE active normal faults, the most notable being the Baza Fault, in the Guadix-Baza Basin, and the Granada, Sierra Elvira-Dílar and Padul-Dúrcal Faults, in the Granada Basin. In addition, other active faults with different orientations also exist, such as the Alfahuara-Botardo and the Galera faults in the Guadix-Baza Basin, and the Huenes, Obéilar-Pinos Puente and N of Sierra Tejeda Faults in the Granada Basin. Moreover, in several sectors, the presence of orthogonal normal fault sets suggests alternating trends or even radial extension. Slip rates of these active faults, based on geologic markers, vary between 0.06 and 0.5 mm/year. Estimates for the maximum expected magnitude of earthquakes caused by these faults vary between M W 6.0 and 7.0. The N of Sierra Tejeda and the Baza Faults, the larg-ISSN (print): 1698-6180. ISSN (online): 1886-7995
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.