For the first time, poly(butadiene) has been covalently linked to an oligonucleotide sequence and the resulting nucleo-copolymer exhibits amphiphilic properties in dilute aqueous solution, self-assembling into nanometer-sized vesicular structures.
Oligonucleotide model surfaces allowing independent variation of topography and chemical composition were designed to study the adhesion and biofilm growth of E.coli. Surfaces were produced by covalent binding of oligonucleotides and immobilization of nucleotide-based vesicles. Their properties were confirmed through a combination of fluorescence microscopy, XPS, ellipsometry, AFM and wettability studies at each step of the process. These surfaces were then used to study the response of three different strains of E.coli quantified in a static biofilm growth mode. This study led to convincing evidence that oligonucleotide-modified surfaces, independent of the topographical feature used in this study, enhanced curli expression without an increase in the number of adherent bacteria.
In this work a robust method for grafting thermoresponsive poly(oligo(ethylene glycol) methacrylates) (pOEGMA) macromolecules from polymeric porous membranes and silicon surfaces is presented. Hydrophilic track-etched polyester (PETE) membranes with submicrometer pore sizes and silicon dies were submitted to a plasma treatment, which successfully allowed the introduction of anchoring groups and further grafting of the initiator on the surface. The surface-initiated polymerization of OEGMA was carried out by atom transfer radical polymerization (ATRP), yielding dense polymer brushes. Moreover, the temperature-controlled transport of caffeine through the functionalized membranes was demonstrated and the influence of the pore morphology and immobilized polymer layer thickness on the permeation profile was investigated.
A series of block copolymers containing a dendronised cationic block for efficient DNA binding and a poly(ethylene glycol) block for encapsulation of the complex were synthesised in a modular fashion using a combination of click chemistry and ring-opening metathesis polymerisation. DNA binding experiments, investigated using gel electrophoresis, dynamic light scattering and transmission electron microscopy, showed that all polymers prepared in this study strongly complex DNA and self-assemble into polyion complex micelles with apparent hydrodynamic radii ranging from 20-120 nm at physiological pH (7.4). The in vitro transfection efficiency and toxicity of these potential non-viral vectors were also evaluated in HeLadouble dagger cells using plasmid DNA encoding for green fluorescent protein as the reporter gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.