Summary 1.Trait-based approaches are increasingly being used to test mechanisms underlying species assemblages and biotic interactions across a wide range of organisms including terrestrial arthropods and to investigate consequences for ecosystem processes. Such an approach relies on the standardized measurement of functional traits that can be applied across taxa and regions. Currently, however, unified methods of trait measurements are lacking for terrestrial arthropods and related macroinvertebrates (terrestrial invertebrates hereafter). 2. Here, we present a comprehensive review and detailed protocol for a set of 29 traits known to be sensitive to global stressors and to affect ecosystem processes and services. We give recommendations how to measure these traits under standardized conditions across various terrestrial invertebrate taxonomic groups. 3. We provide considerations and approaches that apply to almost all traits described, such as the selection of species and individuals needed for the measurements, the importance of intraspecific trait variability, how many populations or communities to sample and over which spatial scales. 4. The approaches outlined here provide a means to improve the reliability and predictive power of functional traits to explain community assembly, species diversity patterns and ecosystem processes and services within and across taxa and trophic levels, allowing comparison of studies and running meta-analyses across regions and ecosystems. Ecology 2017Ecology , 31, 558-567 doi: 10.1111Ecology /1365Ecology -2435 5. This handbook is a crucial first step towards standardizing trait methodology across the most studied terrestrial invertebrate groups, and the protocols are aimed to balance general applicability and requirements for special cases or particular taxa. Therefore, we envision this handbook as a common platform to which researchers can further provide methodological input for additional special cases.
The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.
Summary1. Changes in livestock grazing regimes are among the most important drivers of species loss and decrease in functional diversity world-wide. However, taxonomic and functional diversities (TD and FD) can respond differently to changes in grazing regime or productivity. 2. We surveyed plant communities from 67 sites under different grazing regimes (from heavy grazing to grazing abandonment) in wet and dry habitats, in both wet and dry years. We tested the influence of grazing intensity, habitat type and rainfall on TD, FD and the relationship between them. We also partitioned diversity to examine the effects of grazing on TD and FD across scales (within communities, within grazing levels and between grazing levels). 3. The effect of grazing within and across communities was modulated by water availability, with grazing showing the strongest effects in dry habitats. The relationship between FD and TD varied between habitat types and years and revealed high functional similarity between species (i.e. redundancy) in dry habitats. TD was reduced in the driest conditions across all the observation levels, contrasting with the high temporal stability of FD, suggesting that FD was decoupled from TD, especially in dry habitats. However, despite the high temporal and spatial stability of FD, results show that under severely limited water availability, high grazing pressure can reduce FD, revealing a convergence in traits under the combined effect of grazing and drought conditions. 4. Synthesis and applications. Results highlight the dependence of functional diversity on the combined effect of water availability and grazing regime. Under severely limited water availability, grazing intensification reduced the functional diversity of these grasslands. Because of the foreseeable reduction in water availability in Mediterranean environments, we recommend the adoption of flexible grazing management schemes that take species and functional diversities into account simultaneously and adapt the level of grazing pressure to water availability.
Summary 1.Ecologists use approaches based on plant functional traits to tackle several fundamental and applied questions. Although a perfect characterization of functional trait structure requires the measurement of all the individuals in communities, this is prohibitively resource-consuming. Consequently, the general practice is to average the trait values of a reduced number of individuals per species. However, there are different alternatives regarding the number, identity and spatial location of the individuals chosen to calculate species-averaged trait values. 2. In this study, we compared different strategies for sampling functional traits, using community-weighted mean trait values (CWM) and the Rao index of functional diversity (FD). We intensively sampled the functional trait structure along a topographical gradient in a Mediterranean grassland, obtaining accurate estimations of the 'real' values of these indices (CWM I and FD I ) for three traits (height, leaf area and specific leaf area). 3. We simulated three different sampling strategies differing in the spatial location of the individuals used to estimate species-mean trait: (i) average of the whole gradient (GLO), (ii) average of the sampling unit in which the abundances of species maximize (MAX) and (iii) average of a reduced number of individuals per species and sampling unit (LOC). For each strategy, we simulated different sampling intensities (number of individuals sampled). 4. For each trait, we examined the ability of each strategy and sampling intensity to accurately estimate CWM I and FD I , as well as their ability to detect changes in functional trait structure along the topographical gradient. 5. LOC outperformed the other strategies in terms of accuracy and bias, and was much more efficient to describe changes along the gradient, regardless of the traits and indicators considered. Furthermore, LOC was the only strategy that improved consistently as sampling intensity increased, especially at low levels of intensity. 6. Our results indicate that the impact of considering intraspecific variability in trait values can be greater than commonly assumed. Strategies that neglect this source of variability can result in inaccurate or biased estimations of the functional trait structure of plant communities. Most importantly, we show that intraspecific variability can be taken into consideration without any increases in the total number of individuals measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.