Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens which threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. This article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research.
Stimulation of plant natural defenses is an important challenge in phytoprotection prospects. In that context, elicitins, which are small proteins secreted by Phytophthora and Pythium species, have been shown to induce a hypersensitive-like reaction in tobacco plants. Moreover, these plants become resistant to their pathogens, and thus this interaction constitutes an excellent model to investigate the signaling pathways leading to plant resistance. However, most plants are not reactive to elicitins, although they possess the functional signaling pathways involved in tobacco responses to elicitin. The understanding of factors involved in this reactivity is needed to develop agronomic applications. In this review, it is proposed that elicitins could interact with regulating cell wall proteins before they reach the plasma membrane. Consequently, the plant reactivity or nonreactivity status could result from the equilibrium reached during this interaction. The possibility of overexpressing the elicitins directly from genomic DNA in Pichia pastoris allows site-directed mutagenesis experiments and structure/function studies. The recent discovery of the sterol carrier activity of elicitins brings a new insight on their molecular activity. This constitutes a crucial property, since the formation of a sterol-elicitin complex is required to trigger the biological responses of tobacco cells and plants. Only the elicitins loaded with a sterol are able to bind to their plasmalemma receptor, which is assumed to be an allosteric calcium channel. Moreover, Phytophthora and Pythium do not synthesize the sterols required for their growth and their fructification, and elicitins may act as shuttles trapping the sterols from the host plants. Sequence analysis of elicitin genes from several Phytophthora species sheds unexpected light on the phylogenetic relationships among the genus, and suggests that the expression of elicitins is under tight regulatory control. Finally, general involvement of these lipid transfer proteins in the biology of Pythiaceae, and in plant defense responses, is discussed. A possible scheme for the coevolution between Phytophthora and tobacco plants is approached.
Biotrophic filamentous plant pathogens frequently establish intimate contact with host cells through intracellular feeding structures called haustoria. To form and maintain these structures, pathogens must avoid or suppress defence responses and reprogramme the host cell. We used Arabidopsis whole-genome microarrays to characterize genetic programmes that are deregulated during infection by the biotrophic' oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis. Marked differences were observed between early and late stages of infection, but a gene encoding a putative leucine-rich repeat receptor-like kinase (LRR-RLK) was constantly up-regulated. We investigated the evolutionary history of this gene and noticed it being one of the first to have emerged from a common ancestral gene that gave rise to a cluster of 11 genes through duplications. The encoded LRR-RLKs harbour an extracellular malectin-like (ML) domain in addition to a short stretch of leucine-rich repeats, and are thus similar to proteins from the symbiosis receptor-like kinase family. Detailed expression analysis showed that the pathogenresponsive gene was locally expressed in cells surrounding the oomycete. A knockout mutant showed reduced downy mildew infection, but susceptibility was fully restored through complementation of the mutation, suggesting that the (ML-)LRR-RLK contributes to disease. According to the mutant phenotype, we denominated it Impaired Oomycete Susceptibility 1 (IOS1).
A lambda recombinant phage, carrying a radish rDNA fragment spanning the complete external spacer and its borders, has been isolated and characterized by sequencing. The fragment is 2911 bp long and includes 486 bp of the 3' end of the 25s rRNA sequence, 2349 bp of spacer and the first 76 bp of the 5' end of the 18s rRNA sequence. The spacer can be divided into three regions: two unique domains flanking a 830-bp region of repeated sequences. Seven repeats ranging from 80 to 103 bp can be recognized. They are separated by short arrays of 12 -21 adenylic residues. Each repeat slightly differs from the others by single-nucleotide changes or short deletions. Examination of single-nucleotide changes common to two units suggests that a duplication arose during the evolution of this sequence. The repeated region was subcloned and used as a probe to demonstrate that it is highly species-specific: in stringent conditions it does not cross-hybridize with the spacer of ribosomal genes from closely related species such as Brassica. Transcription products, starting or finishing within the spacer sequence, were mapped by northern blotting, primer extension and S1 mapping. Two major precursors were identified starting respectively at positions 2095 and 2280. The region surrounding the start at 2095 presents extensive homology with an analogous region in maize, rye, mung bean, Xenopus and tse-tse fly. However, longer transcripts can be detected. Several 3' ends downstream of the 25s terminus were also observed. Taken together these results indicate that rDNA transcription and pre-rRNA processing in plants are more complex than anticipated from previous studies.Higher plant genomes contain multiple copies of ribosomal RNA nuclear genes [I, 21. The general organization of these genes is similar to that of animals [3]. They are organized in tandem repeats, the coding sequences being separated by a small internal transcribed spacer and a large external spacer, which is considered to be only partially transcribed (ENTS : external non-transcribed spacer and ETS : external transcribed spacer).Several plant rDNAs have been characterized by molecular cloning and restriction mapping. In many species these studies revealed an important heterogeneity between the numerous genes of a single individual. Several types of genes were reported (reviews [4, 51). Some species, such as flax or soybean, were shown to have fairly homogeneous genes; wheat, barley, rice, broad bean, mung bean, cucumber and pea present length heterogeneity; onion and radish present sequence heterogeneity. Finally other species present both length and sequence heterogeneity. Variability is .also evident at the species level and it is very often possible to distinguish between different cultivars or different wild-type populations from a given species by their restriction pattern [5 -111. Therefore, this variability seems to be very useful for plant breeding and evolutionary studies.The molecular basis for length heterogeneity has been recently elucidated. Variations in th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.