Please cite this article in press as: D. Munteanu, et al., Influence of composition and structural properties in the tribological behaviour of magnetron sputtered Ti-Si-C nanostructured thin films, prepared at low temperature, Wear (2009),
Thermophysical and tribological measurements have been performed on carbon nanotube added silicon nitride composites. Higher thermal conductivity values were observed in the case of the sample with CNT than for the reference sample. As was observed from tribological measurements, nanocomposite Si3N4 without carbon nanotubes shows a higher friction coefficient than carbon nanotube - Si3N4. The results of wear study indicate that the Si3N4 ball (used as static partner) was more damaged with MWCNTs addition nanocomposite than with pure Si3N4 ceramic. A pronounced difference was observed in the wear rate: there was a much higher wear for carbon nanotube - Si3N4 than for Si3N4 without MWCNTs.
Carbon-based nanocomposite thin films have large application potential because they possess unique mechanical properties, especially high hardness, high elasticity, and a low widely adjustable friction coefficient.
In this work, relatively easy preparation of the nanocomposite Ti and C system with good mechanical properties and bioactivity was showed. Formation of physical and mechanical processes, relationship between the evolving structure and other properties of TiC films were studied. The films were deposited on oxidized silicon substrates by dc magnetron sputtering of Ti and C targets in argon and nitrogen at different temperatures between 25°C and 800°C. The composite films consisted of metallic nanocrystalls embedded in a carbon matrix. Highest hardness ~ 18 GPa and reduced modulus of elasticity ~ 205 GPa were obtained when the crystalline nanoparticles were separated by 2-3 nm thin carbon matrix consisting of amorphous and graphite-like carbon phases. In these films the H/E ratio in the both cases is ~ 0,1. Bioactivity studies were carried out on human osteoblast-like cell line MG-63. The number of initially adhering cells on day 7 after seeding was significantly higher on the TiC surface than on the control culture dishes. Good biocompatibility and bioadhesion of these surfaces are attained by a favourable combination of surface roughness and chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.