Enthalpy arrays enable label-free, solution-based calorimetric detection of molecular interactions in a 96-detector array format. The combination of the small size of the detectors and ability to perform measurements in parallel results in a significant reduction of sample volume and measurement time compared with conventional calorimetry. We have made significant improvements in the technology by reducing the temperature noise of the detectors and improving the fabrication materials and methods. In combination with an automated measurement system, the advances in device performance and data analysis have allowed us to develop basic enzyme assays for substrate specificity and inhibitor activity. We have also performed a full titration of 18-crown-6 with barium chloride. These results point to future applications for enthalpy array technology, include fragmentbased screening, secondary assays, and thermodynamic characterization of leads in drug discovery.
Enthalpy arrays enable label-free, solution-based calorimetric detection of molecular interactions in a 96-detector array format. Compared with conventional calorimetry, enthalpy arrays achieve a significant reduction of sample volume and measurement time through the combination of the small size of the detectors and ability to perform measurements in parallel. The current capabilities of the technology for studying enzyme-catalyzed reactions are demonstrated by determining the kinetic parameters for reactions with three model enzymes. In addition, the technology has been used with two classes of enzymes to determine accurate inhibitor constants for competitive inhibitors from measurements at a single inhibitor concentration.
The authors have constructed an array of 12 piezoelectric ejectors for printing biological materials. A single-ejector footprint is 8 mm in diameter, standing 4 mm high with 2 reservoirs totaling 76 µL. These ejectors have been tested by dispensing various fluids in several environmental conditions. Reliable drop ejection can be expected in both humidity-controlled and ambient environments over extended periods of time and in hot and cold room temperatures. In a prototype system, 12 ejectors are arranged in a rack, together with an X-Y stage, to allow printing any pattern desired. Printed arrays of features are created with a biological solution containing bovine serum albumin-conjugated oligonucleotides, dye, and salty buffer. This ejector system is designed for the ultra-high-throughput generation of arrays on a variety of surfaces. These single or racked ejectors could be used as long-term storage vessels for materials such as small molecules, nucleic acids, proteins, or cell libraries, which would allow for efficient preprogrammed selection of individual clones and greatly reduce the chance of cross-contamination and loss due to transfer. A new generation of design ideas includes plastic injection-molded ejectors that are inexpensive and disposable and handheld personal pipettes for liquid transfer in the nanoliter regime. (Journal of Biomolecular Screening 2004:85-94)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.