Solid state UV emitters have many advantages over conventional UV sources. The (Al,In,Ga)N material system is best suited to produce LEDs and laser diodes from 400 nm down to 210 nm—due to its large and tuneable direct band gap, n- and p-doping capability up to the largest bandgap material AlN and a growth and fabrication technology compatible with the current visible InGaN-based LED production. However AlGaN based UV-emitters still suffer from numerous challenges compared to their visible counterparts that become most obvious by consideration of their light output power, operation voltage and long term stability. Most of these challenges are related to the large bandgap of the materials. However, the development since the first realization of UV electroluminescence in the 1970s shows that an improvement in understanding and technology allows the performance of UV emitters to be pushed far beyond the current state. One example is the very recent realization of edge emitting laser diodes emitting in the UVC at 271.8 nm and in the UVB spectral range at 298 nm. This roadmap summarizes the current state of the art for the most important aspects of UV emitters, their challenges and provides an outlook for future developments.
The performance characteristics of AlGaN-based deep ultraviolet light emitting diodes (UV-LEDs) grown by metalorganic vapor phase epitaxy on sputtered and high temperature annealed AlN/sapphire templates are investigated and compared with LEDs grown on epitaxially laterally overgrown (ELO) AlN/sapphire. The structural and electro-optical properties of the devices on 350 nm sputtered and high temperature annealed AlN/sapphire show similar defect densities and output power levels as LEDs grown on low defect density ELO AlN/sapphire templates. After high temperature annealing of the 350 nm sputtered AlN, the full widths at half maximum of the (0002) and (101¯2) reflections of the high resolution x-ray diffraction rocking curves decrease by one order of magnitude to 65 arc sec and 240 arc sec, respectively. The curvature of the sputtered and HTA AlN/sapphire templates after regrowth with 400 nm MOVPE AlN is with −80 km−1 much lower than the curvature of the ELO AlN/sapphire template of −160 km−1. The on-wafer measured output powers of 268 nm LEDs grown on 350 nm sputtered and high temperature annealed AlN/sapphire templates and ELO AlN/sapphire templates were 0.70 mW and 0.72 mW at 20 mA, respectively (corresponding to an external quantum efficiency of 0.75% and 0.78%). These results show that sputtered and high temperature annealed AlN/sapphire provide a viable approach for the fabrication of efficient UVC-LEDs with reduced complexity and thus reduced costs.
The design and Mg-doping profile of AlN/Al0.7Ga0.3N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm2.
Silicon doping of AlxGa1−xN layers with high aluminum mole fractions (0.8 < x < 1) was studied. The AlGaN:Si layers were pseudomorphically grown by metalorganic vapor phase epitaxy on low defect density epitaxially laterally overgrown AlN/sapphire templates. The effects of SiH4/III ratio and aluminum content on the resistivity, the carrier concentration, and the mobility have been investigated. By variation of the SiH4/III ratio during the growth of AlxGa1−xN:Si layers, a recorded low resistivity of Al0.81Ga0.19N:Si was obtained with 0.026 Ω cm. The resistivity increases exponentially with increasing aluminum content to 3.35 Ω cm for Al0.96Ga0.04N, and the optimum SiH4/III ratio is shifted towards lower values. Hall effect measurements show that the increase of the resistivity with increasing aluminum mole fraction is mainly caused by a decrease of the carrier density. The optimized Al0.81Ga0.19N:Si exhibits a carrier concentration of 1.5 × 1019 cm−3 and a mobility of the carriers of 16.5 cm2 V−1 s−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.