The performance characteristics of AlGaN-based deep ultraviolet light emitting diodes (UV-LEDs) grown by metalorganic vapor phase epitaxy on sputtered and high temperature annealed AlN/sapphire templates are investigated and compared with LEDs grown on epitaxially laterally overgrown (ELO) AlN/sapphire. The structural and electro-optical properties of the devices on 350 nm sputtered and high temperature annealed AlN/sapphire show similar defect densities and output power levels as LEDs grown on low defect density ELO AlN/sapphire templates. After high temperature annealing of the 350 nm sputtered AlN, the full widths at half maximum of the (0002) and (101¯2) reflections of the high resolution x-ray diffraction rocking curves decrease by one order of magnitude to 65 arc sec and 240 arc sec, respectively. The curvature of the sputtered and HTA AlN/sapphire templates after regrowth with 400 nm MOVPE AlN is with −80 km−1 much lower than the curvature of the ELO AlN/sapphire template of −160 km−1. The on-wafer measured output powers of 268 nm LEDs grown on 350 nm sputtered and high temperature annealed AlN/sapphire templates and ELO AlN/sapphire templates were 0.70 mW and 0.72 mW at 20 mA, respectively (corresponding to an external quantum efficiency of 0.75% and 0.78%). These results show that sputtered and high temperature annealed AlN/sapphire provide a viable approach for the fabrication of efficient UVC-LEDs with reduced complexity and thus reduced costs.
The design and Mg-doping profile of AlN/Al0.7Ga0.3N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm2.
Deep UV-LEDs (DUV-LEDs) emitting at 233 nm with an emission power of (1.9 ± 0.3) mW and an external quantum efficiency of (0.36 ± 0.07) % at 100 mA are presented. The entire DUV-LED process chain was optimized including the reduction of the dislocation density using epitaxially laterally overgrown AlN/sapphire substrates, development of vanadium-based low resistance n-metal contacts, and employment of high thermally conductive AlN packages. Estimated device lifetimes above 1500 h are achieved after a burn-in of 100 h. With the integration of a UV-transparent lens, a strong narrowing of the far-field pattern was achieved with a radiant intensity of 3 mW/sr measured at 20 mA.
The optical polarization of emission from ultraviolet (UV) light emitting diodes (LEDs) based on (0001)-oriented AlxGa1−xN multiple quantum wells (MQWs) has been studied by simulations and electroluminescence measurements. With increasing aluminum mole fraction in the quantum well x, the in-plane intensity of transverse-electric (TE) polarized light decreases relative to that of the transverse-magnetic polarized light, attributed to a reordering of the valence bands in AlxGa1−xN. Using k ⋅ p theoretical model calculations, the AlGaN MQW active region design has been optimized, yielding increased TE polarization and thus higher extraction efficiency for bottom-emitting LEDs in the deep UV spectral range. Using (i) narrow quantum wells, (ii) barriers with high aluminum mole fractions, and (iii) compressive growth on patterned aluminum nitride sapphire templates, strongly TE-polarized emission was observed at wavelengths as short as 239 nm.
We report on the performance of AlGaN-based deep ultraviolet light-emitting diodes (UV-LEDs) emitting at 265 nm grown on stripe-patterned high-temperature annealed (HTA) epitaxially laterally overgrown (ELO) aluminium nitride (AlN)/sapphire templates. For this purpose, the structural and electro-optical properties of ultraviolet-c light-emitting diodes (UVC-LEDs) on as-grown and on HTA planar AlN/sapphire as well as ELO AlN/sapphire with and without HTA are investigated and compared. Cathodoluminescence measurements reveal dark spot densities of 3.5 × 10 9 cm − 2 , 1.1 × 10 9 cm − 2 , 1.4 × 10 9 cm − 2 , and 0.9 × 10 9 cm − 2 in multiple quantum well samples on as-grown planar AlN/sapphire, HTA planar AlN/sapphire, ELO AlN/sapphire, and HTA ELO AlN/sapphire, respectively, and are consistent with the threading dislocation densities determined by transmission electron microscopy (TEM) and high-resolution X-ray diffraction rocking curve. The UVC-LED performance improves with the reduction of the threading dislocation densities (TDDs). The output powers (measured on-wafer in cw operation at 20 mA) of the UV-LEDs emitting at 265 nm were 0.03 mW (planar AlN/sapphire), 0.8 mW (planar HTA AlN/sapphire), 0.9 mW (ELO AlN/sapphire), and 1.1 mW (HTA ELO AlN/sapphire), respectively. Furthermore, Monte Carlo ray-tracing simulations showed a 15% increase in light-extraction efficiency due to the voids formed in the ELO process. These results demonstrate that HTA ELO AlN/sapphire templates provide a viable approach to increase the efficiency of UV-LEDs, improving both the internal quantum efficiency and the light-extraction efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.