The factors that regulate pancreatic beta cell proliferation are not well defined. In order to explore the role of murine placental lactogen (PL)-I (mPL-I) in islet mass regulation in vivo, we developed transgenic mice in which mPL-I is targeted to the beta cell using the rat insulin II promoter. Rat insulin II-mPL-I mice displayed both fasting and postprandial hypoglycemia (71 and 105 mg/dl, respectively) as compared with normal mice (92 and 129 mg/dl; p < 0.00005 for both). Plasma insulin concentrations were inappropriately elevated, and insulin content in the pancreas was increased 2-fold. Glucose-stimulated insulin secretion by perifused islets was indistinguishable from controls at 7.5, 15, and 20 mM glucose. Beta cell proliferation rates were twice normal (p ؍ 0.0005). This hyperplasia, together with a 20% increase in beta cell size, resulted in a 2-fold increase in islet mass (p ؍ 0.0005) and a 1.45-fold increase in islet number (p ؍ 0.0012). In mice, murine PL-I is a potent islet mitogen, is capable of increasing islet mass, and is associated with hypoglycemia over the long term. It can be targeted to the beta cell using standard gene targeting techniques. Potential exists for beta cell engineering using this strategy.
The neuropeptide galanin is predominantly expressed by the lactotrophs (the prolactin secreting cell type) in the rodent anterior pituitary and in the median eminence and paraventricular nucleus of the hypothalamus. Prolactin and galanin colocalize in the same secretory granule, the expression of both proteins is extremely sensitive to the estrogen status of the animal. The administration of estradiol-17 induces pituitary hyperplasia followed by adenoma formation and causes a 3,000-fold increase in the galanin mRNA content of the lactotroph. To further study the role of galanin in prolactin release and lactotroph growth we now report the generation of mice carrying a loss-of-function mutation of the endogenous galanin gene. There is no evidence of embryonic lethality and the mutant mice grow normally. The specific endocrine abnormalities identified to date, relate to the expression of prolactin. Pituitary prolactin message levels and protein content of adult female mutant mice are reduced by 30-40% compared with wild-type controls. Mutant females fail to lactate and pups die of starvation͞dehydration unless fostered onto wild-type mothers. Prolactin secretion in mutant females is markedly reduced at 7 days postpartum compared with wild-type controls with an associated failure in mammary gland maturation. There is an almost complete abrogation of the proliferative response of the lactotroph to high doses of estrogen, with a failure to up-regulate prolactin release, STAT5 expression or to increase pituitary cell number. These data further support the hypothesis that galanin acts as a paracrine regulator of prolactin expression and as a growth factor to the lactotroph.The factors that regulate proliferation of the lactotroph are largely unknown. Further, the relationship of altered prolactin secretion to lactotroph proliferation is also unclear. Pregnancy induces a coordinated increase in prolactin release and the number of lactotrophs, with a marked involution in their number once lactation ceases (1-4). In contrast, a sustained and uncontrolled proliferation of lactotrophs culminates in the development of prolactin-secreting adenomas (prolactinomas) resulting in inappropriate lactation. The prevalence of prolactinomas is an estimated 100 per million (5). However, in autopsy series of elderly females the prevalence is 1,000-fold greater, emphasizing that most prolactinomas are clinically silent and common in the elderly population (6). Prolactinomas are also a common cause of death in female aged rats of a number of strains (7-9). Treatment of prolactinomas with dopamine agonists reduces pituitary prolactin expression and reverses lactotroph hyperplasia, emphasizing the link between prolactin expression and cellular proliferation. Prolactinomas arise as monoclonal neoplasms, indicating that one or more somatic mutations underlie tumor pathogenesis. A large and increasing body of literature has failed to identify mutations in known protooncogenes in human prolactinomas (10-12). In contrast, exogenous estro...
Up-regulation of maternal islet function is essential to accommodate the increased demand for insulin during pregnancy. Previously, we suggested that lactogenic activity regulates islet function during pregnancy. However, this hypothesis was based on the effect of homologous PRLs on islets, since the homologous placental lactogens (or islets) were unavailable. In this study we examine the direct effects of homologous placental lactogens (PL), PRL, and GH on insulin secretion and B-cell division in rat, mouse, and human islets in vitro. Neonatal rat islets were cultured for 8 days in the presence of 0-1000 ng/ml rat PL-I (rPL-I), rPRL, or rGH. Media were changed daily, and the insulin concentration was determined. rPL-I and rPRL (500 ng/ml) treatment resulted in a 2-fold increase in insulin secretion. rGH (1000 ng/ml) elicited a 30% increase in insulin secretion. Similarly, cell replication, as indicated by BrdU incorporation into B-cells, was increased 4-fold in the presence of rPL-I and rPRL. The ED50 for insulin secretion and 5'-bromo-2'-deoxyuridine (BrdU) incorporation was 70 ng/ml for rPL-I and 150 ng/ml for rPRL. Similarly, in adult rat islets, insulin secretion was increased 1.6-fold, and B-cell replication increased 3-fold in the presence of the lactogenic hormones. Neonatal mouse islets were cultured for 8 days in the presence of 500 ng/ml mouse (m) PL-I, mPL-II, mPRL, or mGH. mPL-I, mPL-II, and mPRL treatment resulted in a 2-fold increase in insulin secretion. mGH elicited a 30% increase in insulin secretion. BrdU incorporation into B-cells was increased 3-fold in the presence of mPL-I and mPRL and 2-fold in the presence of mPL-II. Adult human islets were cultured for 8 days in the presence of 1 microgram/ml human (h) PL, hPRL, or hGH. For human islets isolated from six pancreata obtained from females, hPL (138 +/- 10%), hPRL (133 +/- 9%), and hGH (117 +/- 3%) significantly increased insulin secretion compared to that from control islets. This study compares the direct effects among homologous PLs, PRLs, and GHs on insulin secretion and B-cell division in rat, mouse, and human islets. The results indicate that placental lactogen directly regulates islet function in several species and is probably the principal hormone responsible for the increased islet function observed during normal pregnancy.
Predicted amino acid sequences for the mouse GH receptor and the related serum GH binding protein were deducted from cDNAs. Two types of cDNA clones were isolated. Both types coded an identical peptide domain with extensive homology to the extracellular domains of the recently cloned human and rabbit GH receptors. However, while one type of clone also encoded regions with homology to the transmembrane and cytoplasmic domains of the human and rabbit GH receptors, the other encoded a short hydrophilic carboxyl-terminal region in place of the transmembrane domain. It is speculated that these two types of clones encode the high and low molecular weight variants of the mouse GH receptor/serum binding proteins, respectively. The low molecular weight variant has been previously found to constitute the majority of the serum GH binding activity in mice. It is proposed that the substitution of the hydrophilic tail for the transmembrane domain may give the low molecular weight variant its soluble nature and account for its presence in serum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.