Abstract:The paper deals with the hydrodynamic properties, i.e. the consumption of mechanical energy expressed by pressure drops within a helium loop intended for the testing of decay heat removal (DHR) from the model of a gas-cooled fast reactor (GFR). The system is characterised by the natural circulation of helium, as a coolant, and assume steady operating conditions of circulation. The helium loop consists of four main components: model of gas-cooled fast reactor, model of the heat exchanger for decay heat removal, hot piping branch and cold piping branch. Using the process hydrodynamic calculations, the pressure drops of circulating helium within the main components of the helium loop were determined. The calculations have been done for several defined operating conditions which correspond to the different helium flow rates within the system.
Nowadays, the operating nuclear reactors are able to utilise only 1 of mined out uranium. An effective exploitation of uranium, even 60 , is possible to achieve in so-called fast reactors. These reactors commercial operation is expected after the year 2035. Several design configurations of these reactors exist. Fast reactors rank among the so-called Generation IV reactors. Helium-cooled reactor, as a gas-cooled fast reactor, is one of them. Exchangers used to a heat transfer from a reactor active zone (i.e. heat exchangers) are an important part of fast reactors. This paper deals with the design calculation of U-tube heat exchanger (precisely 1-2 shell and tube heat exchanger with U-tubes): water -helium.
There are the various types of heat exchangers. The selection of the heat exchanger right type is the first basic assumption for its optimal operation. The heat exchanger calculation itself is another prerequisite for its optimal operation. This article deals with the variables which are usually used to describe the stationary operation of any recuperative heat exchanger with two incoming and two outgoing streams. The knowledge of these variables, including the facts resulting from them, is necessary not only from the point of view of the calculation but also from the point of view of the evaluation of the experimental data of any heat exchanger. The variables values needed for the calculation of heat exchangers, so-called key variables, must always fall within the values range determined on the basis of generally valid knowledge about heat exchangers. The article also deals with the determination of the limit values defining the values range of these key variables.
The paper deals with the process properties in terms of the heat transfer, i.e. the thermal performance of the thermal-process units within a helium loop intended for the testing of the decay heat removal (DHR) from the model of the gas-cooled fast reactor (GFR). The system is characterised by a natural circulation of helium, as a coolant, and assume the steady operating conditions of the circulation. The helium loop consists of four main components: the model of the gas-cooled fast reactor, the model of the heat exchanger for the decay heat removal, hot piping branch and cold piping branch. Using the thermal calculations, the thermal performance of the heat exchanger model and the thermal performance of the gas-cooled fast reactor model are determined. The calculations have been done for several defined operating conditions which correspond to the different helium flow rates within the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.