Embryonic stem cells are unique among cultured cells in their ability to self-renew and differentiate into a wide diversity of cell types, suggesting that a specific molecular control network underlies these features. Human embryonic stem cells (hESCs) are known to have distinct mRNA expression, global DNA methylation, and chromatin profiles, but the involvement of high-level regulators, such as microRNAs (miRNA), in the hESC-specific molecular network is poorly understood. We report that global miRNA expression profiling of hESCs and a variety of stem cell and differentiated cell types using a novel microarray platform revealed a unique set of miRNAs differentially regulated in hESCs, including numerous miRNAs not previously linked to hESCs. These hESC-associated miRNAs were more likely to be located in large genomic clusters, and less likely to be located in introns of coding genes. hESCs had higher expression of oncogenic miRNAs and lower expression of tumor suppressor miRNAs than the other cell types. Many miRNAs upregulated in hESCs share a common consensus seed sequence, suggesting that there is cooperative regulation of a critical set of target miRNAs. We propose that miRNAs are coordinately controlled in hESCs, and are key regulators of pluripotence and differentiation. STEM CELLS
The International Stem Cell Initiative compared several commonly used approaches to assess human pluripotent stem cells (PSC). PluriTest predicts pluripotency through bioinformatic analysis of the transcriptomes of undifferentiated cells, whereas, embryoid body (EB) formation in vitro and teratoma formation in vivo provide direct tests of differentiation. Here we report that EB assays, analyzed after differentiation under neutral conditions and under conditions promoting differentiation to ectoderm, mesoderm, or endoderm lineages, are sufficient to assess the differentiation potential of PSCs. However, teratoma analysis by histologic examination and by TeratoScore, which estimates differential gene expression in each tumor, not only measures differentiation but also allows insight into a PSC’s malignant potential. Each of the assays can be used to predict pluripotent differentiation potential but, at this stage of assay development, only the teratoma assay provides an assessment of pluripotency and malignant potential, which are both relevant to the pre-clinical safety assessment of PSCs.
Understanding the mechanisms by which stem cells home precisely to regions of injury or degeneration is of importance to both basic and applied regenerative medicine. Optimizing regenerative processes may depend on identifying the range of molecules that subserve stem cell trafficking. The "rolling" of extravasating cells on endothelium under conditions of physiological flow is the first essential step in the homing cascade and determines cell adhesion and transmigration. Using a laminar flow chamber to simulate physiological shear stress, we explored an aspect of this process by using human neural stem cells (hNSCs). We observed that the interactions between hNSCs and tumor necrosis factor-␣ (TNF-␣)-stimulated human endothelium (simulating an inflamed milieu) are mediated by a subclass of integrins-␣2, ␣6, and 1, but not ␣4, ␣v, or the chemokine-mediated pathway CXCR4-stromal cell-derived factor-1␣-suggesting not only that the mechanisms mediating hNSC homing via the vasculature differ from the mechanisms mediating homing through parenchyma, but also that each step invokes a distinct pathway mediating a specialized function in the hNSC homing cascade. (TNF-␣ stimulation also upregulates vascular cell adhesion molecule-1 expression on the hNSCs themselves and increases NSC-endothelial interactions.) The selective use of integrin subgroups to mediate homing of cells of neuroectodermal origin may also be used to ensure that cells within the systemic circulation are delivered to the pathological region of a given organ to the exclusion of other, perhaps undesired, organs. STEM CELLS 2006;24:2367-2372
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.