Background: Hyaluronan (HA) contributes to the extracellular matrix in bone marrow. Results: HA expressed by the hematopoietic microenvironment supports hematopoiesis and is involved in hematopoietic stem/progenitor cell migration by regulating the production of soluble factors. Conclusion: Endogenous HA is an important regulatory element of the hematopoietic microenvironment. Significance: Understanding the biology of HA may help to develop strategies for improving the quality of the stem cell microenvironment.
The fate of hematopoietic stem cells (HSCs) is determined by microenvironmental niches, but the molecular structure of these local networks is not yet completely characterized. Our recent observation that glycosaminoglycan hyaluronic acid (HA), a major component of the bone marrow extracellular matrix, is required for in vitro hematopoiesis led us to suggest a role for HA in structuring the hematopoietic niche. Accordingly, HA deprivation induced by various treatments might lead to an imbalance of normal HSC homeostasis. Since 5-fluorouracil (5-FU) administration sharply decreases the amount of cell surface-associated HA in bone marrow, we examined whether the administration of exogenous HA enhances suppressed hematopoiesis in 5-FU-treated mice. HA administered to mice following 5-FU infusion facilitated the recovery of leukocytes and thrombocytes in the peripheral blood. Intravenously infused HA was found in the bone marrow, where it bound endothelial cells and resident macrophages and increased expression of the hematopoiesis-supportive cytokines interleukin-1 and interleukin-6. In agreement with these observations, enhanced hematopoietic activity was detected in the bone marrow, as measured by elevated counts of long-term culture-initiating cells (LTC-ICs), committed progenitors, and the total number of mature bone marrow cells. Overall, our results suggest that HA is required for regulation of the hematopoiesis-supportive function of bone marrow accessory cells and, therefore, participates in hematopoietic niche assembly.
Understanding the mechanisms by which stem cells home precisely to regions of injury or degeneration is of importance to both basic and applied regenerative medicine. Optimizing regenerative processes may depend on identifying the range of molecules that subserve stem cell trafficking. The "rolling" of extravasating cells on endothelium under conditions of physiological flow is the first essential step in the homing cascade and determines cell adhesion and transmigration. Using a laminar flow chamber to simulate physiological shear stress, we explored an aspect of this process by using human neural stem cells (hNSCs). We observed that the interactions between hNSCs and tumor necrosis factor-␣ (TNF-␣)-stimulated human endothelium (simulating an inflamed milieu) are mediated by a subclass of integrins-␣2, ␣6, and 1, but not ␣4, ␣v, or the chemokine-mediated pathway CXCR4-stromal cell-derived factor-1␣-suggesting not only that the mechanisms mediating hNSC homing via the vasculature differ from the mechanisms mediating homing through parenchyma, but also that each step invokes a distinct pathway mediating a specialized function in the hNSC homing cascade. (TNF-␣ stimulation also upregulates vascular cell adhesion molecule-1 expression on the hNSCs themselves and increases NSC-endothelial interactions.) The selective use of integrin subgroups to mediate homing of cells of neuroectodermal origin may also be used to ensure that cells within the systemic circulation are delivered to the pathological region of a given organ to the exclusion of other, perhaps undesired, organs. STEM CELLS 2006;24:2367-2372
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.