Myelin oligodendrocyte glycoprotein (MOG) is an antigen of the myelin sheath, which may trigger immune cell responses and the production of auto‐antibodies in multiple sclerosis (MS). In this study, we used MOG 35‐55‐induced experimental autoimmune encephalomyelitis (EAE), a model of human MS, to assess the production of catalytically active immunoglobulin G (IgG) antibodies or abzymes which have been shown to be present in sera of patients with several autoimmune diseases. Here, we show that IgGs from the sera of control C57BL/6 mice are catalytically inactive. During development of EAE, a specific reorganization of the immune system of mice occurred leading to a condition which was associated with the generation of catalytically active IgGs hydrolysing DNA, myelin basic protein (MBP) and MOG which was associated with increased proteinuria, changes in differentiation of mice bone marrow hematopoietic stem cells (HSCs) and an increase in proliferation of lymphocytes in bone marrow, spleen and thymus as well as a significant suppression of cell apoptosis in these organs. The strongest alterations were found in the early disease phase (18–24 days after immunization) and were less pronounced in later EAE stages (40 days after EAE induction). We conclude that a significant increase in DNase and proteolytic activities of antibodies may be considered the earliest statistically significant marker of MOG‐induced EAE in mice. The possible differences in immune system reorganizations during preclinical phases of the disease, acute and late EAE, leading to production of different auto‐antibodies and abzymes as well other changes are discussed.
Immunization of experimental autoimmune encephalomyelitis (EAE)‐prone C57BL/6 mice with MOG 35‐55 (a model used to study aspects of human multiple sclerosis) is known to lead to the production of various abzymes. The production of catalytic IgGs that can efficiently hydrolyse myelin basic protein (MBP), MOG and DNA is associated with changes in the profile of differentiation and level of proliferation of mice bone marrow haematopoietic stem cells (HSCs). As MOG simulates the production of abzymes with high DNase activity, we compared the effects of DNA and MOG immunization on EAE‐prone mice. In contrast to MOG, immunization with DNA leads to a suppression of proteinuria, a decrease in the concentrations of antibodies to MOG and DNA and a reduction in abzyme production. Immunization with DNA only resulted in a significant increase in DNase activity over 40 days where it became 122‐fold higher than before immunization, and fivefold higher when comparing to the maximal activity obtained after MOG treatment. DNA and MOG immunization had different effects on the differentiation profiles of HSCs, lymphocyte proliferation, and the level of apoptosis in bone marrow and other organs of mice. The data indicate that for C57BL/6 mice, DNA may have antagonistic effects with respect to MOG immunization. The usually fast immune response following MOG injection in C57BL/6 mice is strongly delayed after immunization with DNA, which is probably due to a rearrangement of the immune system following the response to DNA.
It was shown that IgGs from the sera of 2–7-month-old control non-autoimmune (CBA x C57BL)F1 and BALB/c mice and 2–3-month-old autoimmune prone MRL-lpr/lpr mice (conditionally healthy mice) are catalytically inactive. During spontaneous development of deep systemic lupus erythematosus (SLE)-like pathology a specific reorganization of immune system of these mice leads to conditions associated with a production of IgGs hydrolyzing DNA, ATP and polysaccharides with low catalytic activities (conditionally pre-diseased mice).A significant increase in DNase, ATPase and amylase IgG relative activities associated with a transition from pre-diseased to deep diseased mice is correlated with additional changes in differentiation and proliferation of mice bone marrow haematopoietic stem cells (HSCs) and lymphocyte proliferation in different organs.The highest increase in all abzyme activities was found in mice immunized with DNA, which in comparison with pre-diseased and diseased mice are characterized by a different profile of HSC differentiation and by a suppression of cell apoptosis. Abzyme activities in the serum of pregnant females were comparable with those for pre-diseased mice, but the profile of HSC differentiation and cell apoptosis levels in pregnant and pre-diseased mice were quite different. Right after the beginning of lactation (4 days after delivery) and in a late time of lactation (14 days after delivery) there was an observed increase in cell apoptosis and two different stages of significant change in the HSC differentiation profiles; the first stage was accompanied with a significant increase and the second with a remarkable decrease in abzyme activities. Overall, all mouse groups investigated are characterized by a specific relationship between abzyme activities, HSC differentiation profiles, levels of lymphocyte proliferation, and cell apoptosis in different organs. From our point of view, the appearance of ATPase, DNase activities may be considered the earliest statistically significant marker of mouse spontaneous SLE and a further significant increase in their activities correlates with the appearance of SLE visible markers and with an increase in concentrations of anti-DNA Abs and urine protein. However, development of autoimmune (AI)-reactions and the increase in the sera anti-DNA antibodies (Abs) and in the abzyme activities in pregnant and lactating mice do not associate with SLE visible markers and proteinuria. The possible differences in immune system reorganizations during pre-disease, disease, pregnancy and lactation leading to production of different auto-antibodies and abzymes are discussed.
Animals spontaneously developing lupus-like autoimmune pathology (SLE) are very promising models to study the mechanisms of natural abzymes (Abzs) generation and their role in etiology and pathogenesis of autoimmune diseases, but Abzs from the sera of animals remain virtually unstudied. In this work, electrophoretically homogeneous IgGs were isolated from the sera of MRL/MpJ-lpr mice. It was shown for the first time that amylase activity is an intrinsic property of antibodies (Abs) and their isolated heavy and light chains. Various markers of SLE pathology (proteinuria, enhanced concentration of anti-DNA Abs) increased with spontaneous development of SLE and especially after animal immunization, correlating with the increase in Abz relative amylase activity. The highest amylase activity was found in the sera Abs of healthy mice after delivery and at the beginning of lactation; this was not correlated with markers of mouse SLE but supports the idea that pregnancy could ''activate'' or ''trigger'' autoimmune-like manifestations and Abzs production in healthy mammals. The possible differences in mechanisms of Abzs production in lactating mice and animals developing SLE are discussed.
Experimental autoimmune encephalomyelitis (EAE)‐prone C57BL/6 mice are used as a model of human multiple sclerosis. We immunize mice with myelin oligodendrocyte glycoprotein (MOG), DNA–histone and DNA‐methylated bovine serum albumin (met‐BSA) complexes to reveal different characteristics of EAE development including bone marrow lymphocyte proliferation and differentiation profiles of hematopoietic stem cells. Immunization of C57BL/6 mice with MOG35‐55 results in the acceleration of EAE development. Anti‐DNA antibodies are usually directed against DNA–histone complexes resulting from cell apoptosis. During the acute EAE phase (7‐20 days after immunization), catalytic antibodies efficiently hydrolysing myelin basic protein (MBP), MOG and DNA are produced with parallel suppression of antibodies hydrolysing histones. We could show that in contrast to MOG, immunization with histone‐DNA results in a reduction of proteinuria, a significant increase in anti‐DNA, anti‐MBP and anti‐MOG antibody titres, as well as an increase in their catalytic activities for antigen hydrolysis, but slightly changes the concentration of cytokines. Contrary to MOG, DNA–histone and DNA‐met‐BSA only stimulated the formation of anti‐DNA antibodies hydrolysing DNA with a long delay (15‐20 days after immunization). Our data indicate that for C57BL/6 mice immunization with DNA‐met‐BSA and DNA–histone complexes may have opposing effects compared to MOG. DNA–histone stimulates the appearance of histone‐hydrolysing abzymes in the acute EAE phase, while abzymes with DNase activity appear at significantly later time‐points. We conclude that MOG, DNA–histone and DNA‐met‐BSA have different effects on numerous bone marrow, cellular, immunological and biochemical parameters of immunized mice, but all antigens finally significantly stimulate the development of the EAE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.