Unprecedented success and active usage of social media services result in massive amounts of user-generated data. An increasing interest in the contained information from social media data leads to more and more sophisticated analysis and visualization applications. Because of the fast pace and distribution of news in social media data it is an appropriate source to identify events in the data and directly display their occurrence to analysts or other users. This paper presents a method for event identification in local areas using the Twitter data stream. We implement and use a combined log-likelihood ratio approach for the geographic and time dimension of real-life Twitter data in predefined areas of the world to detect events occurring in the message contents. We present a case study with two interesting scenarios to show the usefulness of our approach.
In this article, we describe a workflow and tool that allows a flexible formation of hypotheses about text features and their combinations, which are significantly connected in time to quantitative phenomena observed in stock data. To support such an analysis, we combine the analysis steps of frequent quantitative and text-oriented data using an existing a priori method. First, based on heuristics, we extract interesting intervals and patterns in large time series data. The visual analysis supports the analyst in exploring parameter combinations and their results. The identified time series patterns are then input for the second analysis step, in which all identified intervals of interest are analyzed for frequent patterns co-occurring with financial news. An a priori method supports the discovery of such sequential temporal patterns. Then, various text features such as the degree of sentence nesting, noun phrase complexity, and the vocabulary richness, are extracted from the news items to obtain meta-patterns. Meta-patterns are defined by a specific combination of text features which significantly differ from the text features of the remaining news data. Our approach combines a portfolio of visualization and analysis techniques, including time, cluster, and sequence visualization and analysis functionality. We provide a case study and an evaluation on financial data where we identify important future work. The workflow could be generalized to other application domains such as data analysis of smart grids, cyber physical systems, or the security of critical infrastructure, where the data consist of a combination of quantitative and textual time series data.
Business processes have tremendously changed the way large companies conduct their business: The integration of information systems into the workflows of their employees ensures a high service level and thus high customer satisfaction. One core aspect of business process engineering are events that steer the workflows and trigger internal processes. Strict requirements on interval-scaled temporal patterns, which are common in time series, are thereby released through the ordinal character of such events. It is this additional degree of freedom that opens unexplored possibilities for visualizing event data. In this paper, we present a flexible and novel system to find significant events, event clusters and event patterns. Each event is represented as a small rectangle, which is colored according to categorical, ordinal or intervalscaled metadata. Depending on the analysis task, different layout functions are used to highlight either the ordinal character of the data or temporal correlations. The system has built-in features for ordering customers or event groups according to the similarity of their event sequences, temporal gap alignment and stacking of co-occurring events. Two characteristically different case studies dealing with business process events and news articles demonstrate the capabilities of our system to explore event data.
Abstract-In general, books are not appropriate for all ages, so the aim of this work was to find an effective method of representing the age suitability of textual documents, making use of automatic analysis and visualization. Interviews with experts identified possible aspects of a text (such as 'is it hard to read?') and a set of features were devised (such as linguistic complexity, story complexity, genre) which combine to characterize these age related aspects. In order to measure these properties, we map a set of text features onto each one. An evaluation of the measures, using Amazon Mechanical Turk, showed promising results. Finally, the set features are visualized in our age-suitability tool, which gives the user the possibility to explore the results, supporting transparency and traceability as well as the opportunity to deal with the limitations of automatic methods and computability issues.Index Terms-Information interfaces and presentation, information search and retrieval.
Visual analysis of time series data is an important, yet challenging task with many application examples in fields such as financial or news stream data analysis. Many visual time series analysis approaches consider a global perspective on the time series. Fewer approaches consider visual analysis of local patterns in time series, and often rely on interactive specification of the local area of interest. We present initial results of an approach that is based on automatic detection of local interest points. We follow an overview-first approach to find useful parameters for the interest point detection, and details-on-demand to relate the found patterns. We present initial results and detail possible extensions of the approach
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.