SummaryWe report on results on the preparation of thin (<100 nm) aluminum oxide (Al2O3) films on silicon substrates using thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) in the SENTECH SI ALD LL system. The T-ALD Al2O3 layers were deposited at 200 °C, for the PE-ALD films we varied the substrate temperature range between room temperature (rt) and 200 °C. We show data from spectroscopic ellipsometry (thickness, refractive index, growth rate) over 4” wafers and correlate them to X-ray photoelectron spectroscopy (XPS) results. The 200 °C T-ALD and PE-ALD processes yield films with similar refractive indices and with oxygen to aluminum elemental ratios very close to the stoichiometric value of 1.5. However, in both also fragments of the precursor are integrated into the film. The PE-ALD films show an increased growth rate and lower carbon contaminations. Reducing the deposition temperature down to rt leads to a higher content of carbon and CH-species. We also find a decrease of the refractive index and of the oxygen to aluminum elemental ratio as well as an increase of the growth rate whereas the homogeneity of the film growth is not influenced significantly. Initial state energy shifts in all PE-ALD samples are observed which we attribute to a net negative charge within the films.
Gallium oxide (Ga2O3) thin films were deposited by plasma-enhanced atomic layer deposition (PEALD) applying a capacitively coupled plasma source where trimethylgallium (TMGa) as the gallium precursor and oxygen (O2) plasma were used in a substrate temperature (Ts) in range of 80–200 °C. TMGa exhibits high vapor pressure and therefore facilitates deposition at lower substrate temperatures. The Ga2O3 films were characterized by spectroscopic ellipsometry (SE), x-ray photoelectron spectroscopy (XPS), and capacitance-voltage (C-V) measurements. The SE data show linear thickness evolution with a growth rate of ∼0.66 Å per cycle and inhomogeneity of ≤2% for all samples. The refractive index of the Ga2O3 thin films is 1.86 ± 0.01 (at 632.8 nm) and independent of temperature, whereas the bandgap slightly decreases from 4.68 eV at Ts of 80 °C to 4.57 eV at 200 °C. XPS analysis revealed ideal stoichiometric gallium to oxygen ratios of 2:3 for the Ga2O3 layers with the lowest carbon contribution of ∼10% for the sample prepared at 150 °C. The permittivity of the layers is 9.7 ± 0.2 (at 10 kHz). In addition, fixed and mobile oxide charge densities of 2–4 × 1012 and 1–2 × 1012 cm−2, respectively, were observed in the C-V characteristics. Moreover, the Ga2O3 films show breakdown fields in the range of 2.2–2.7 MV/cm. Excellent optical and electrical material properties are maintained even at low substrate temperatures as low as 80 °C. Hence, the TMGa/O2 PEALD process is suitable for electronic and optoelectronic applications where low-temperature growth is required.
Valence band (VB) spectra of titanium dioxide (TiO2) and oxynitride (TiOxNy) films prepared by different atomic layer deposition (ALD) processes are compared and related to electrical characterization [current–voltage (JV) and capacitance–voltage (CV)] results. By increasing the nitrogen amount in the TiO2 film, band-gap narrowing is observed. The band-gap decrease is related to the contribution of the nitrogen density of states, which induces defects within the band-gap and thus reduces its optical band-gap. In-gap states are found in the VB spectra at 1 eV below the Fermi energy in all investigated ALD samples, i.e., in TiO2 as well as in TiOxNy films. An exponential correlation between leakage current density and in-gap state intensity is derived by the combination of JV measurements and VB spectra, whereas the in-gap states seem to have no influence on hysteresis and fixed oxide charges found in the CV data. It is argued that the in-gap states in TiO2 and TiOxNy have an excitonic or polaronic origin. Both, band-gap narrowing and in-gap state intensity can be tuned by the ALD process selection and the variation of its parameters.
A rapid thermal oxidation process of silicon in N20 ambient was investigated using a commercially available reactor with a fixed wafer position and a gas flow parallel to the wafer surface. For such a configuration, thickness uniformities in the 2% range were obtained for the first time. The oxidation rate as a function of process temperature and time was investigated. A retardation in the N20 oxidation rate as compared to the oxidation in O2 ambient is explained by the formation of a nitrided interracial layer. A comparison of experimental results with an oxidation model calculation shows that this interface can affect either the oxidant diffusivity through the oxide or the reaction rate at the silicon surface. Infrared spectra of nitrided oxide films reveal a regular arrangement in the Si-O network, similar to that of high quality thermally grown oxides. A vibrational contribution to that spectrum from a Si-ON subnetwork is displayed. The accumulated charge to breakdown on metal-oxide-semiconductor capacitors as a function of the injected current density revealed different slopes for oxides either thermally grown or grown in N20. Hence, the projected lifetime for devices with N20 grown oxide under low operating fields is extended by one order of magnitude in comparison with th e thermal oxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.