The results of previous in vitro experiments indicate that a glycosylphosphatidylinositol (GPI)-anchored protein may play an important role in the guidance of temporal retinal axons during the formation of the topographically ordered retinotectal projection. We have purified and cloned a GPI-anchored, 25 kDa glycoprotein that is a good candidate for a molecule involved in this process. During the time of innervation by retinal ganglion cells, this protein is gradedly expressed in the posterior part of the developing tectum. In two different in vitro assay systems, the recombinant protein induces growth cone collapse and repulsion of retinal ganglion cell axons. These phenomena are observed for axons of temporal as well as nasal origin, indicating that an additional activity may be necessary to confer the nasotemporal specificity observed in previous assays. We named the protein RAGS (for repulsive axon guidance signal). The sequence of RAGS shows significant homology to recently identified ligands for receptor tyrosine kinases of the Eph subfamily.
Axons rely on guidance cues to reach remote targets during nervous system development. A well-studied model system for axon guidance is the retinotectal projection. The retina can be divided into halves; the nasal half, next to the nose, and the temporal half. A subset of retinal axons, those from the temporal half, is guided by repulsive cues expressed in a graded fashion in the optic tectum, part of the midbrain. Here we report the cloning and functional characterization of a membrane-associated glycoprotein, which we call RGM (repulsive guidance molecule). This molecule shares no sequence homology with known guidance cues, and its messenger RNA is distributed in a gradient with increasing concentration from the anterior to posterior pole of the embryonic tectum. Recombinant RGM at low nanomolar concentration induces collapse of temporal but not of nasal growth cones and guides temporal retinal axons in vitro, demonstrating its repulsive and axon-specific guiding activity.
Two ligands for Eph‐related receptor tyrosine kinases, RAGS and ELF‐1, have been implicated in the control of development of the retinotectal projection. Both molecules are expressed in overlapping gradients in the tectum, the target area of retinal ganglion cell axons. In two in vitro assays ELF‐1 is shown to have a repellent axon guidance function for temporal, but apparently not for nasal axons. RAGS on the other hand is repellent for both types of axons, though to different degrees. Thus, RAGS and ELF‐1 share some and differ in other properties. The biological activities of these molecules correlate with the strength of interaction with their receptors expressed on RGC axons. The meaning of these findings for guidance of retinal axons in the tectum is discussed.
Spatial gradients of axon guiding molecules have long been suspected to provide positional and directional cues for retinal ganglion cell axons growing within the optic tectum. With the identification of a guiding activity from tectal cell membranes, it has become possible to investigate the potential physiological significance of molecular gradients for retinal growth cone behavior in vitro. A subset of retinal growth cones, those from the temporal half, were highly sensitive to small concentration changes of the guiding component. The degree of response was correlated with the strength of the gradient. These findings demonstrate that the neural growth cone can read gradients of surface-associated information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.