Little is known about the relative role of cAMP-dependent protein kinase (cAPK) and guanine exchange factor directly activated by cAMP (Epac) as mediators of cAMP action. We tested cAMP analogs for ability to selectively activate Epac1 or cAPK and discriminate between the binding sites of Epac and of cAPKI and cAP-KII. We found that commonly used cAMP analogs, like 8-Br-cAMP and 8-pCPT-cAMP, activate Epac and cAPK equally as well as cAMP, i.e. were full agonists. In contrast, 6-modified cAMP analogs, like N 6 -benzoyl-cAMP, were inefficient Epac activators and full cAPK activators. Analogs modified in the 2-position of the ribose induced stronger Epac1 activation than cAMP but were only partial agonists for cAPK. 2-O-Alkyl substitution of cAMP improved Epac/cAPK binding selectivity 10 -100-fold. Phenylthio substituents in position 8, particularly with MeO-or Cl-in p-position, enhanced the Epac/cAPK selectivity even more. The combination of 8-pCPT-and 2-O-methyl substitutions improved the Epac/cAPK binding selectivity about three orders of magnitude. The cAPK selectivity of 6-substituted cAMP analogs, the preferential inhibition of cAPK by moderate concentrations of Rp-cAMPS analogs, and the Epac selectivity of 8-pCPT-2-O-methyl-cAMP was also demonstrated in intact cells. Using these compounds to selectively modulate Epac and cAPK in PC-12 cells, we observed that analogs selectively activating Epac synergized strongly with cAPK specific analogs to induce neurite outgrowth. We therefore conclude that cAMP-induced neurite outgrowth is mediated by both Epac and cAPK.
Cyclic AMP (cAMP) has traditionally been thought to act exclusively through cAMP-dependent protein kinase (cAPK, PKA), but a growing number of cAMP e¡ects are not attributable to general activation of cAPK. At present, cAMP is known also to directly regulate ion channels and the ubiquitous Rap guanine exchange factors Epac 1 and 2. Adding to the sophistication of cAMP signaling is the fact that (1) the cAPK holoenzyme is incompletely dissociated even at saturating cAMP, the level of free R subunit of cAPK being able to regulate the maximal activity of cAPK, (2) cAPK activity can be modulated by oxidative glutathionylation, and (3) cAPK is anchored close to relevant substrates, other signaling enzymes, and local compartments of cAMP. Finally, we will demonstrate an example of ¢ne-tuning of cAMP signaling through synergistic induction of neurite extensions by cAPK and Epac.
Chemoresistance represents a major problem in the treatment of many malignancies. Overcoming this obstacle will require improved understanding of the mechanisms responsible for this phenomenon. The progenitor cell marker NG2/melanoma proteoglycan (MPG) is aberrantly expressed by various tumors, but its role in cell death signaling and its potential as a therapeutic target are largely unexplored. We have assessed cytotoxic druginduced cell death in glioblastoma spheroids from 15 patients, as well as in five cancer cell lines that differ with respect to NG2/MPG expression. The tumors were treated with doxorubicin, etoposide, carboplatin, temodal, cisplatin and tumor necrosis factor (TNF)a. High NG2/ MPG expression correlated with multidrug resistance mediated by increased activation of a3b1 integrin/PI3K signaling and their downstream targets, promoting cell survival. NG2/MPG knockdown with shRNAs incorporated into lentiviral vectors attenuated b1 integrin signaling revealing potent antitumor effects and further sensitized neoplastic cells to cytotoxic treatment in vitro and in vivo. Thus, as a novel regulator of the antiapoptotic response, NG2/MPG may represent an effective therapeutic target in several cancer subtypes.
Glioblastomas (GBMs) are aggressive brain tumors that always recur after radiotherapy. Cystine, mainly provided by the system X(c)(-) antiporter, is a requirement for glioma cell synthesis of glutathione (GSH) which has a critical role in scavenging free radicals, for example, after radiotherapy. Thus, we hypothesized that the X(c)(-)-inhibitor sulfasalazine (SAS) could potentiate the efficacy of radiotherapy against gliomas. Here, we show that the catalytic subunit of system X(c)(-), xCT, was uniformly expressed in a panel of 30 human GBM biopsies. SAS treatment significantly reduced cystine uptake and GSH levels, whereas it significantly increased the levels of reactive oxygen species (ROS) in glioma cells in vitro. Furthermore, SAS and radiation synergistically increased DNA double-strand breaks and increased glioma cell death, whereas adding the antioxidant N-acetyl-L-cysteine (NAC) reversed cell death. Moreover, SAS and gamma knife radiosurgery (GKRS) synergistically prolonged survival in nude rats harboring human GBM xenografts, compared with controls or either treatment alone. In conclusion, SAS effectively blocks cystine uptake in glioma cells in vitro, leading to GSH depletion and increased ROS levels, DNA damage and cell death. Moreover, it potentiates the anti-tumor efficacy of GKRS in rats with human GBM xenografts, providing a survival benefit. Thus, SAS may have a role as a radiosensitizer to enhance the efficacy of current radiotherapies for glioma patients.
Acute myeloid leukemia (AML) is a hematological cancer that mainly affects the elderly. Although complete remission (CR) is achieved for the majority of the patients after induction and consolidation therapies, nearly two-thirds relapse within a short interval. Understanding biological factors that determine relapse has become of major clinical interest in AML. We utilized liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify the protein changes and protein phosphorylation events associated with AML relapse in primary cells from 41 AML patients at time of diagnosis. Patients were defined as relapse-free if they had not relapsed within a five-year clinical follow-up after AML diagnosis. Relapse was associated with increased expression of RNA processing proteins and decreased expression of V-ATPase proteins. We also observed an increase in phosphorylation events catalyzed by cyclin-dependent kinases (CDKs) and casein kinase 2 (CSK2). The biological relevance of the proteome findings was supported by cell proliferation assays using inhibitors of V-ATPase (bafilomycin), CSK2 (CX-4945), CDK4/6 (abemaciclib) and CDK2/7/9 (SNS-032). While bafilomycin preferentially inhibited the cells from relapse patients, the kinase inhibitors were less efficient in these cells. This suggests that therapy against the upregulated kinases could also target the factors inducing their upregulation rather than their activity. This study, therefore, presents markers that could help predict AML relapse and direct therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.