An antireflective optical film with subwavelength structures replicated by use of a roll-to-roll micro-replication process (RMRP) is investigated. Firstly, a single layer of a nanostructure on a polymer film is designed for an antireflection purpose by the finite difference time domain method in the visible light spectrum. Structures of a conical cylinder array, with spatial period of 400 nm, diameter of 200 nm and height of 350 nm, are numerically obtained. Then, such structures are fabricated by RMRP combining originated structure fabrication realized by deep ultraviolet lithography and dry etching, Ni mold electroplating and replication by using the roll-to-roll process imprinting into the flexible polyethylene terephthalate substrate. A nanostructure roller mold bonded with Ni molds has been successfully fabricated and coated with the self-assembly monolayer process for the purpose of fabricating an anti-adhesion film and improving the lifetime of the Ni molds. The duplicated nanostructure films show a good optical quality of antireflection (AR 2.45% in a 400-700 nm spectral range) and are in good agreement with the theoretical predictions. The experimental results show that the developed process is a promising and cost-effective method for the continuous duplication of flexible devices with nano-scaled feature sizes used in nanophotonics by RMRP.
We report the effects of In 0.33 Ga 0.67 As capping layers on the structural and optical properties of InAs self-organized quantum dots grown by gas-source molecular-beam epitaxy. With different deposition methods for the InGaAs capping layer, the quantum-dot density can be adjusted from 2.3ϫ10 10 to 1.7ϫ10 11 cm Ϫ2 . As-cleaved 3.98-mm-long diode laser using triple stacks of InAs quantum dots with the capping layer grown by GaAs/InAs sequential binary growth demonstrates an emission wavelength of 1305 nm and a threshold current density of 360 A/cm 2 . A ground-state saturation gain of 16.6 cm Ϫ1 is achieved due to the high dot density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.