High-voltage electric field-driven jet deposition technology is a novel high resolution micro scale 3D printing method. In this paper, a novel micro 3D printing method is proposed to fabricate wax micro-structures. The mechanism of the Taylor cone generation and droplet eject deposition was analyzed, and a high-voltage electric field-driven jet printing experimental system was developed based on the principle of forming. The effects of process parameters, such as pulse voltages, gas pressures, pulse width, pulse frequency, and movement velocity, on wax printing were investigated. The experimental results show that the increasing of pulse width and duration of pulse high voltage increased at the same pulse frequency, resulting in the micro-droplet diameter being increased. The deposited droplet underwent a process of spreading, shrinking, and solidifying. The local remelting and bonding were acquired between the contact surfaces of the adjacent deposited droplets. According to the experiment results, a horizontal line and a vertical micro-column were fabricated by adjusting the process parameters; their size deviation was controlled within 2%. This research shows that it is feasible to fabricate the micro-scale wax structure using high-voltage electric field-driven jet deposition technology.
Polycaprolactone (PCL) scaffolds have been widely used in biological manufacturing engineering. With the expansion of the PCL application field, the manufacture of high-resolution complex microstructure PCL scaffolds is becoming a technical challenge. In this paper, a novel PCL high-resolution fused deposition 3D printing based on electric field-driven (EFD) jet deposition is proposed to manufacture PCL porous scaffold structures. The process principle of continuous cone-jet printing mode was analyzed, and an experimental system was constructed based on an electric field driven jet to carry out PCL printing experiments. The experimental studies of PCL-fused deposition under different gas pressures, electric field voltages, motion velocities and deposition heights were carried out. Analysis of the experimental results shows that there is an effective range of deposition height (H) to realize stable jet printing when the applied voltage is constant. Under the stretching of electric field force and viscous drag force (FD) with increasing movement velocities (Vs) at the same voltage and deposition height, the width of deposition lines was also gradually decreased. The width of the deposition line and the velocity of the deposition platform is approximately a quadratic curve. The bending phenomenon of deposition lines also gradually decreases with the increase of the movement velocities. According to the experiment results, a single layer linear grid structure was printed under the appropriate process parameters, with compact structure, uniform size and good straightness. The experimental results verify that the PCL porous scaffold structure can be accurately printed and manufactured.
Non-ferrous metals play an important role in the national economy, and more and more attention has been paid to their efficient large-scale production. However, the non-ferrous metal production plant environment is bad, the ingot line vibration is violent, the surface of the metal solution also has strong reflective, these adverse factors lead to the automatic detection of the level measurement process in the non-ferrous metal production is very difficult, have to retain a large number of manual links. In order to solve the above problems, an automatic measurement system of non-ferrous metal solution level based on structured light triangulation is established. The system adopts filtering algorithm based on statistics to suppress the adverse effect of ingot line vibration on measurement. At the same time, by increasing the Angle between the optical axis of the camera and the laser plane, the influence of the strong reflection of the solution surface on the measurement can be reduced. The relative error of the system can be controlled within 1.3%, which can meet the actual measurement demand in engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.