We quantify historical and projected trends in the population exposure to climate extremes as measured by the United States National Center for Environmental Information Climate Extremes Index (CEI). Based on the analyses of the historical observations, we find that the U.S. has already experienced a rise in the occurrence of aggregated extremes in recent decades, consistent with the climate response to historical increases in radiative forcing. Additionally, we find that exposure can be expected to intensify under the Representative Concentration Pathway 8.5, with all counties permanently exceeding the baseline variability in the occurrence of extreme hot days, warm nights, and drought conditions by 2050. As a result, every county in the U.S. is projected to permanently exceed the historical CEI variability (as measured by one standard deviation during the 1981-2005 period). Based on the current population distribution, this unprecedented change implies a yearly exposure to extreme conditions for one in every three people. We find that the increasing trend in exposure to the aggregated extremes is already detectable over much of the U.S., and particularly in the central and eastern U.S. The high correspondence between the pattern of trends in our simulations and observations increases confidence in the projected amplification of population exposure to unprecedented combinations of extreme climate conditions, should greenhouse gas concentrations continue to escalate along their current trajectory.
A robust understanding of the sub-seasonal cold season (November–March) precipitation variability over the High Mountains of Asia (HMA) is lacking. Here, we identify dynamic and thermodynamic pathways through which natural modes of climate variability establish their teleconnections over the HMA. First, we identify evaporative sources that contribute to the cold season precipitation over the HMA and surrounding areas. The predominant moisture contribution comes from the mid-latitude regions, including the Mediterranean/Caspian Seas and Mediterranean land. Second, we establish that several tropical and extratropical forcings display a sub-seasonally fluctuating influence on precipitation distribution over the region during the cold season. Many of them varyingly interact, so their impacts cannot be explained independently or at seasonal timescales. Lastly, a single set of evaporative sources is not identifiable as the key determinant in propagating a remote teleconnection because the sources of moisture anomalies depend on the pattern of sub-seasonally varying dynamical forcing in the atmosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.