Experiments on X-ray magnetic circular dichroism (XMCD) were performed with synchrotron radiation for Zn and Mn-Zn ferrites (normal-spinel structure) and Ni, Co and Cu ferrites and magnetite (inverse-spinel structure). The inverse-spinel ferrites have positive-to-negative dispersion-type XMCD signals in the pre-edge region of the Fe K edge, which originate from Fe 3+ ions in the A sites. There are no such signals for normal-spinel ferrites. Two kinds of negative-to-positive dispersion-type XMCD signals were observed in 7.119-7.125 keV and 7.122-7.129 keV regions of the main edge, which are caused by a mixture of Fe 3+ and Fe 2+ ions of the B sites in magnetite and Fe 3+ ions of the B sites in the other inverse-spinel ferrites, respectively. The B-site origin of the XMCD main-edge spectra was also confirmed by observation of X-ray resonant magnetic scattering for the 222 reflection of Ni ferrite.
Kalpha emission of high-Z solid targets irradiated by an intense, short (<100 fs) laser pulse in the 10 keV region is shown to be sensitive to the electron energy cutoff, which is strongly dependent on the density gradient of the plasma corona formed by a long prepulse. The absorption rate of short laser pulses, the hot electron distribution, and x-ray emission from a Cu slab target are studied via a hybrid model, which combines the hydrodynamics, collisional particle-in-cell, and Monte Carlo simulation techniques, and via a direct spectroscopic measurement. An absorption mechanism originating from the interaction of the laser pulse with plasma waves is found to increase the absorption rate by over 30% even for a very short, s-polarized laser pulse. Calculated and measured x-ray spectra are in good agreement, confirming the electron energy cutoff.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.