Human-induced pluripotent stem cells (hiPSCs) have shown great potential toward practical and scientific applications. We previously reported the generation of human dental pulp stem cells using non-integrating replication-defective Sendai virus (SeVdp) vector in feeder-free culture with serum-free medium hESF9. This study describes the generation of hiPSCs from peripheral blood mononuclear cells to increase the donor population, while reducing biopsy invasiveness. From 6-d-old primary culture of peripheral blood mononuclear cells (PBMCs) with IL-2, hiPSCs were established using SeVdp(KOSM)302L with recombinant Laminin-511 E8 fragments under serum-free condition. The established PBMC-derived hiPSCs showed pluripotency and differentiation ability both in vivo and in vitro. In addition, we evaluated microarray data from PBMC-and dental pulp-derived hiPSCs. These hiPSCs will be beneficial for characterizing the molecular mechanisms of cellular differentiation and may provide useful substrates for developing cellular therapeutics.
Noonan syndrome is an autosomal dominant developmental disorder. Although it is relatively common, and its phenotypical variability is well documented, its pathophysiology is not fully understood. Previously, with the aim of revealing the pathogenesis of genetic disorders, we reported the induction of cleidocranial dysplasia-specific human-induced pluripotent stem cells (hiPSCs) from patient’s dental pulp cells (DPCs) under serum-free, feeder-free, and integration-free conditions. Notably, these cells showed potential for application to genetic disorder disease models. Furthermore, using similar procedures, we reported the induction of hiPSCs derived from peripheral blood mononuclear cells (PBMCs) of healthy volunteers. These methods are beneficial, because they are carried out without invasive and painful biopsies. Using those procedures, we reprogrammed DPCs and PBMCs that were derived from a patient with Noonan syndrome (NS) to establish NS-specific hiPSCs (NS-DPC-hiPSCs and NS-PBMC-hiPSCs, respectively). The induction efficiency of NS-hiPSCs was higher than that of WT-hiPSCs. We hypothesize that this was caused by high NANOG expression. Here, we describe the experimental results and findings related to NS-hiPSCs. This is the first report on the establishment of NS-hiPSCs and their disease modeling.
Purpose: To determine the clinical and therapeutic characteristics in adolescent and young adult (AYA) generation with oral cancer. Methods: We retrospectively studied AYA patients with oral cancer, aged 16-40 years who visited our department between 1 April 1997 and 31 December 2017, focusing on clinical characteristics including sex, age distribution, tumor site, pathological classification, stage, treatment, treatment outcome, and social rehabilitation. Results: Forty-two patients of AYA generation (19 males and 23 females), accounting for five. Seven percent of all oral cancer patients (740), were included. Most were aged 35-39 (median, 30.9) years. The most frequent site of tumor occurrence was the tongue (n = 29) and the most common histological type was squamous cell carcinoma (n = 30). Most patients had T2N0 cancer based on the TNM classification, and early stage II. Thirty-nine patients underwent radical treatment, comprising 14 cases of surgery, six of chemo-radiation therapy, four of surgery with chemotherapy, and two of surgery with radiation therapy. Conversely, nine patients underwent radical radiation therapy, comprising five cases of internal radiation therapy and four of This article is based on a study first reported in the Journal of the Japanese
Background: Tumor-infiltrating lymphocytes (TILs) have been used to predict the prognosis of solid tumors. In this study, we investigated which molecules in TILs play a role in the prognosis of patients with oral squamous cell carcinoma (OSCC). Methods: In a retrospective case-control study, we immunohistochemically evaluated the expression of CD3, CD8, CD45RO, Granzyme B, and the major histocompatibility complex class I chain-related molecule A (MICA) of the histocompatibility complex as predictors of prognosis in 33 patients with OSCC. The patients were classified as TILsHigh or TILsLow according to the number of TILs for each molecule in the central tumor (CT) and invasive margin (IM). Furthermore, MICA expression scores were determined based on the intensity of the staining. Results: CD45RO+/TIL in the nonrecurrent group were significantly higher than those in the recurrent group in the CT and IM areas (p < 0.05). The disease-free survival/overall survival rate of the CD45RO+/TILsLow group in the CT and IM areas and the Granzyme B+/TILsLow group in the IM area was significantly lower than that of the CD45RO+/TILsHigh group and the Granzyme B+/TILsHigh group, respectively (p < 0.05). Furthermore, the MICA expression score of tumors around the CD45RO+/TILsHigh group was significantly higher than that of the CD45RO+/TILsLow group (p < 0.05). Conclusions: A high ratio of CD45RO-expressing TILs was associated with a disease-free/overall survival improvement in OSCC patients. Furthermore, the number of TILs that express CD45RO was associated with the expression of MICA in tumors. These results suggest that CD45RO-expressing TILs are useful biomarkers for OSCC.
Cleidocranial dysplasia (CCD) is an autosomal dominant hereditary disease associated with the gene RUNX2. Disease-specific induced pluripotent stem cells (iPSCs) have emerged as a useful resource to further study human hereditary diseases such as CCD. In this study, we identified a novel CCD-specific RUNX2 mutation and established iPSCs with this mutation. Biopsies were obtained from familial CCD patients and mutation analyses were performed through Sanger sequencing and next generation sequencing. CCD-specific human iPSCs (CCD-hiPSCs) were established and maintained under completely defined serum, feeder, and integration-free condition using a non-integrating replication-defective Sendai virus vector. We identified the novel mutation RUNX2_c.371C>G and successfully established CCD-hiPSCs. The CCD-hiPSCs inherited the same mutation, possessed pluripotency, and showed the ability to differentiate the three germ layers. We concluded that RUNX2_c.371C>G was likely pathogenic because our results, derived from next generation sequencing, are supported by actual clinical evidence, familial tracing, and genetic data. Thus, we concluded that hiPSCs with a novel CCD-specific RUNX2 mutation are viable as a resource for future studies on CCD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.