More than 20 years ago, electrical impedance spectroscopy (EIS) was proposed as a potential characterization method for flow cytometry. As the setup is comparably simple and the method is label-free, EIS has attracted considerable interest from the research community as a potential alternative to standard optical methods, such as fluorescence-activated cell sorting (FACS). However, until today, FACS remains by and large the laboratory standard with highly developed capabilities and broad use in research and clinical settings. Nevertheless, can EIS still provide a complement or alternative to FACS in specific applications? In this Perspective, we will give an overview of the current state of the art of EIS in terms of technologies and capabilities. We will then describe recent advances in EIS-based flow cytometry, compare the performance to that of FACS methods, and discuss potential prospects of EIS in flow cytometry.
Despite increasing survival rates of pediatric leukemia patients over the past decades, the outcome of some leukemia subtypes has remained dismal. Drug sensitivity and resistance testing on patient‐derived leukemia samples provide important information to tailor treatments for high‐risk patients. However, currently used well‐based drug screening platforms have limitations in predicting the effects of prodrugs, a class of therapeutics that require metabolic activation to become effective. To address this issue, a microphysiological drug‐testing platform is developed that enables co‐culturing of patient‐derived leukemia cells, human bone marrow mesenchymal stromal cells, and human liver microtissues within the same microfluidic platform. This platform also enables to control the physical interaction between the diverse cell types. Herein, it is made possible to recapitulate hepatic prodrug activation of ifosfamide in their platform, which is very difficult in traditional well‐based assays. By testing the susceptibility of primary patient‐derived leukemia samples to the prodrug ifosfamide, sample‐specific sensitivities to ifosfamide in primary leukemia samples are identified. The microfluidic platform is found to enable the recapitulation of physiologically relevant conditions and the testing of prodrugs including short‐lived and unstable metabolites. The platform holds great potential for clinical translation and precision chemotherapy selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.