The aim of this paper is to explore the use of backtrackless walks and prime cycles for characterizing both labeled and unlabeled graphs. The reason for using backtrackless walks and prime cycles is that they avoid tottering, and can increase the discriminative power of the resulting graph representation. However, the use of such methods is limited in practice because of their computational cost. In this paper, we present efficient methods for computing graph kernels, which are based on backtrackless walks in a labeled graph and whose worst case running time is the same as that of kernels based on random walks. For clustering unlabeled graphs, we construct feature vectors using Ihara coefficients, since these coefficients are related to the frequencies of prime cycles in the graph. To efficiently compute the low order coefficients, we present an O(|V|(3)) algorithm which is better than the O(|V|(6)) worst case running time of previously known algorithms. In the experimental evaluation, we apply the proposed method to clustering both labeled and unlabeled graphs. The results show that using backtrackless walks and prime cycles instead of random walks can increase the accuracy of recognition.
Background Mortality remains unacceptably high in patients with heart failure and reduced left ventricular ejection fraction (LVEF) despite advances in therapeutics. We hypothesised that a novel artificial intelligence approach could better assess multiple and higher-dimension interactions of comorbidities, and define clusters of β-blocker efficacy in patients with sinus rhythm and atrial fibrillation.Methods Neural network-based variational autoencoders and hierarchical clustering were applied to pooled individual patient data from nine double-blind, randomised, placebo-controlled trials of β blockers. All-cause mortality during median 1•3 years of follow-up was assessed by intention to treat, stratified by electrocardiographic heart rhythm. The number of clusters and dimensions was determined objectively, with results validated using a leave-one-trial-out approach. This study was prospectively registered with ClinicalTrials.gov (NCT00832442) and the PROSPERO database of systematic reviews (CRD42014010012).Findings 15 659 patients with heart failure and LVEF of less than 50% were included, with median age 65 years (IQR 56-72) and LVEF 27% (IQR 21-33). 3708 (24%) patients were women. In sinus rhythm (n=12 822), most clusters demonstrated a consistent overall mortality benefit from β blockers, with odds ratios (ORs) ranging from 0•54 to 0•74. One cluster in sinus rhythm of older patients with less severe symptoms showed no significant efficacy (OR 0•86, 95% CI 0•67-1•10; p=0•22). In atrial fibrillation (n=2837), four of five clusters were consistent with the overall neutral effect of β blockers versus placebo (OR 0•92, 0•77-1•10; p=0•37). One cluster of younger atrial fibrillation patients at lower mortality risk but similar LVEF to average had a statistically significant reduction in mortality with β blockers (OR 0•57, 0•35-0•93; p=0•023). The robustness and consistency of clustering was confirmed for all models (p<0•0001 vs random), and cluster membership was externally validated across the nine independent trials. Interpretation An artificial intelligence-based clustering approach was able to distinguish prognostic response from β blockers in patients with heart failure and reduced LVEF. This included patients in sinus rhythm with suboptimal efficacy, as well as a cluster of patients with atrial fibrillation where β blockers did reduce mortality.
One of the most important threats to today’s civilization is terrorism. Terrorism not only disturbs the law and order situations in a society but also affects the quality of lives of humans and makes them suppressed physically and emotionally and deprives them of enjoying life. The more the civilizations have advanced, the more the people are working towards exploring different mechanisms to protect the mankind from terrorism. Different techniques have been used as counterterrorism to protect the lives of individuals in society and to improve the quality of life in general. Machine learning methods have been recently explored to develop techniques for counterterrorism based on artificial intelligence (AI). Since deep learning has recently gained more popularity in machine learning domain, in this paper, these techniques are explored to understand the behavior of terrorist activities. Five different models based on deep neural network (DNN) are created to understand the behavior of terrorist activities such as is the attack going to be successful or not? Or whether the attack is going to be suicide or not? Or what type of weapon is going to be used in the attack? Or what type of attack is going to be carried out? Or what region is going to be attacked? The models are implemented in single-layer neural network (NN), five-layer DNN, and three traditional machine learning algorithms, i.e., logistic regression, SVM, and Naïve Bayes. The performance of the DNN is compared with NN and the three machine learning algorithms, and it is demonstrated that the performance in DNN is more than 95% in terms of accuracy, precision, recall, and F1-Score, while ANN and traditional machine learning algorithms have achieved a maximum of 83% accuracy. This concludes that DNN is a suitable model to be used for predicting the behavior of terrorist activities. Our experiments also demonstrate that the dataset for terrorist activities is big data; therefore, a DNN is a suitable model to process big data and understand the underlying patterns in the dataset.
Link prediction in a complex network is a problem of fundamental interest in network science and has attracted increasing attention in recent years. It aims to predict missing (or future) links between two entities in a complex system that are not already connected. Among existing methods, local similarity indices are most popular that take into account the information of common neighbours to estimate the likelihood of existence of a connection between two nodes. In this paper, we propose global and quasi-local extensions of some commonly used local similarity indices. We have performed extensive numerical simulations on publicly available datasets from diverse domains demonstrating that the proposed extensions not only give superior performance, when compared to their respective local indices, but also outperform some of the current, state-of-the-art, local and global link-prediction methods.
Organizations can grow, succeed, and sustain if their employees are committed. The main assets of an organization are those employees who are giving it a required number of hours per month, in other words, those employees who are punctual towards their attendance. Absenteeism from work is a multibillion-dollar problem, and it costs money and decreases revenue. At the time of hiring an employee, organizations do not have an objective mechanism to predict whether an employee will be punctual towards attendance or will be habitually absent. For some organizations, it can be very difficult to deal with those employees who are not punctual, as firing may be either not possible or it may have a huge cost to the organization. In this paper, we propose Neural Networks and Deep Learning algorithms that can predict the behavior of employees towards punctuality at workplace. The efficacy of the proposed method is tested with traditional machine learning techniques, and the results indicate 90.6% performance in Deep Neural Network as compared to 73.3% performance in a single-layer Neural Network and 82% performance in Decision Tree, SVM, and Random Forest. The proposed model will provide a useful mechanism to organizations that are interested to know the behavior of employees at the time of hiring and can reduce the cost of paying to inefficient or habitually absent employees. This paper is a first study of its kind to analyze the patterns of absenteeism in employees using deep learning algorithms and helps the organization to further improve the quality of life of employees and hence reduce absenteeism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.