COVID-19, a deadly disease that originated in Wuhan, China, has resulted in a global outbreak. Patients infected with the causative virus SARS-CoV-2 are placed in quarantine, so the virus does not spread. The medical community has not discovered any vaccine that can be immediately used on patients infected with SARS-CoV-2. The only method discovered so far to protect people from this virus is keeping a distance from other people, wearing masks and gloves, as well as regularly washing and sanitizing hands. Government and law enforcement agencies are involved in banning the movement of people in different cities, to control the spread and monitor people following the guidelines of the CDC. But it is not possible for the government to monitor all places, such as shopping malls, hospitals, government offices, and banks, and guide people to follow the safety guidelines. In this paper, a novel technique is developed that can guide people to protect themselves from someone who has high exposure to the virus or has symptoms of COVID-19, such as having fever and coughing. Different deep Convolutional Neural Networks (CNN) models are implemented to test the proposed technique. The proposed intelligent monitoring system can be used as a complementary tool to be installed at different places and automatically monitor people adopting the safety guidelines. With these precautionary measurements, humans will be able to win this fight against COVID-19.
One of the most important threats to today’s civilization is terrorism. Terrorism not only disturbs the law and order situations in a society but also affects the quality of lives of humans and makes them suppressed physically and emotionally and deprives them of enjoying life. The more the civilizations have advanced, the more the people are working towards exploring different mechanisms to protect the mankind from terrorism. Different techniques have been used as counterterrorism to protect the lives of individuals in society and to improve the quality of life in general. Machine learning methods have been recently explored to develop techniques for counterterrorism based on artificial intelligence (AI). Since deep learning has recently gained more popularity in machine learning domain, in this paper, these techniques are explored to understand the behavior of terrorist activities. Five different models based on deep neural network (DNN) are created to understand the behavior of terrorist activities such as is the attack going to be successful or not? Or whether the attack is going to be suicide or not? Or what type of weapon is going to be used in the attack? Or what type of attack is going to be carried out? Or what region is going to be attacked? The models are implemented in single-layer neural network (NN), five-layer DNN, and three traditional machine learning algorithms, i.e., logistic regression, SVM, and Naïve Bayes. The performance of the DNN is compared with NN and the three machine learning algorithms, and it is demonstrated that the performance in DNN is more than 95% in terms of accuracy, precision, recall, and F1-Score, while ANN and traditional machine learning algorithms have achieved a maximum of 83% accuracy. This concludes that DNN is a suitable model to be used for predicting the behavior of terrorist activities. Our experiments also demonstrate that the dataset for terrorist activities is big data; therefore, a DNN is a suitable model to process big data and understand the underlying patterns in the dataset.
Information is exploding on the web at exponential pace, so online movie review is becoming a substantial information resource for online users. However, users post millions of movie reviews on regular basis, and it is not possible for users to summarize the reviews. Movie review classification and summarization is one of the challenging tasks in natural language processing. Therefore, an automatic approach is demanded to summarize the vast amount of movie reviews, and it will allow the users to speedily distinguish the positive and negative aspects of a movie. This study has proposed an approach for movie review classification and summarization. For movie review classification, bag-of-words feature extraction technique is used to extract unigrams, bigrams, and trigrams as a feature set from given review documents, and represent the review documents as a vector space model. Next, the Naïve Bayes algorithm is employed to classify the movie reviews (represented as a feature vector) into positive and negative reviews. For the task of movie review summarization, Word2vec feature extraction technique is used to extract features from classified movie review sentences, and then semantic clustering technique is used to cluster semantically related review sentences. Different text features are used to calculate the salience score of each review sentence in clusters. Finally, the top-ranked sentences are chosen based on highest salience scores to produce the extractive summary of movie reviews. Experimental results reveal that the proposed machine learning approach is superior than other state-of-the-art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.