Most of the conventional anomaly detectors only take advantage of the spectral information and do not consider the spatial information within neighboring pixels. Recently, the spectral-spatial based local summation anomaly detection (LSAD) algorithm has achieved excellent detection performances. In order to obtain various local spatial distributions with the neighboring pixels of the pixels under test, the LSAD algorithm exploits a multiple-window sliding filter, which can be computationally expensive and time-consuming. In this paper, to address these issues, two modified LSAD-based methods are proposed. The first method, called local summation unsupervised nearest regularized subspace with an outlier removal anomaly detector (LSUNRSORAD), is based on the concept that each pixel in the background can be approximately represented by its spatial neighborhood. The second method, called local summation anomaly detection based on collaborative representation and inverse distance weight (LSAD-CR-IDW), uses the surrounding pixels collected inside the outer window, while outside the inner window, to linearly represent the test pixel and introduces collaborative representation and inverse distance weight to further improve the computational speed and detection precision, respectively. The proposed methods were applied to a synthetic dataset and three real datasets. The experimental results show that the proposed methods have a better detection accuracy and computational speed when compared with the LSAD algorithm and others.
Clustering can be divided into five categories: partitioning, hierarchical, model-based, density-based, and grid-based algorithms. Among them, grid-based clustering is highly efficient in handling spatial data. However, the traditional grid-based clustering algorithms still face many problems: (1) Parameter tuning: density thresholds are difficult to adjust; (2) Data challenge: clusters with overlapping regions and varying densities are not well handled. We propose a new grid-based clustering algorithm named GCBD that can solve the above problems. Firstly, the density estimation of nodes is defined using the standard grid structure. Secondly, GCBD uses an iterative boundary detection strategy to distinguish core nodes from boundary nodes. Finally, two clustering strategies are combined to group core nodes and assign boundary nodes. Experiments on 18 datasets demonstrate that the proposed algorithm outperforms 6 grid-based competitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.