Dialogue systems are a popular Natural Language Processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning based due to the outstanding performance. In this survey, we mainly focus on the deep learning based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present in the area of dialogue systems and dialogue-related tasks, extensively covering the popular frameworks, topics, and datasets 1 . * Equal contribution ‡ Corresponding author 1 The frameworks, topics, and datasets discussed are originated from the extensive literature review of state-of-the-art research. We have tried our best to cover all but may still omit some works. Readers are welcome to provide suggestions regarding the omissions and mistakes in this article. We also intend to update this article with time as and when new approaches or definitions are proposed and used by the community Preprint. Under review.
A method with a combination of multi-dimensional fusion features and a modified deep neural network (MFF-MDNN) is proposed to recognize underwater acoustic targets in this paper. Specifically, due to the complex and changeable underwater environment, it is difficult to describe underwater acoustic signals with a single feature. The Gammatone frequency cepstral coefficient (GFCC) and modified empirical mode decomposition (MEMD) are developed to extract multi-dimensional features in this paper. Moreover, to ensure the same time dimension, a dimension reduction method is proposed to obtain multi-dimensional fusion features in the original underwater acoustic signals. Then, to reduce redundant features and further improve recognition accuracy, the Gaussian mixture model (GMM) is used to modify the structure of a deep neural network (DNN). Finally, the proposed underwater acoustic target recognition method can obtain an accuracy of 94.3% under a maximum of 800 iterations when the dataset has underwater background noise with weak targets. Compared with other methods, the recognition results demonstrate that the proposed method has higher accuracy and strong adaptability.
Relation Extraction (RE) is to predict the relation type of two entities that are mentioned in a piece of text, e.g., a sentence or a dialogue. When the given text is long, it is challenging to identify indicative words for the relation prediction. Recent advances on RE task are from BERT-based sequence modeling and graph-based modeling of relationships among the tokens in the sequence. In this paper, we propose to construct a latent multi-view graph to capture various possible relationships among tokens. We then refine this graph to select important words for relation prediction. Finally, the representation of the refined graph and the BERT-based sequence representation are concatenated for relation extraction. Specifically, in our proposed GDPNet (Gaussian Dynamic Time Warping Pooling Net), we utilize Gaussian Graph Generator (GGG) to generate edges of the multi-view graph. The graph is then refined by Dynamic Time Warping Pooling (DTWPool). On DialogRE and TACRED, we show that GDPNet achieves the best performance on dialogue-level RE, and comparable performance with the state-of-the-arts on sentence-level RE. Our code is available at https://github.com/XueFuzhao/GDPNet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.