The optical, electrical, and chemical properties of semiconductor surfaces are largely determined by their electronic states close to the Fermi level (E{F}). We use scanning tunneling microscopy and density functional theory to clarify the fundamental nature of the ground state Ge(001) electronic structure near E{F}, and resolve previously contradictory photoemission and tunneling spectroscopy data. The highest energy occupied surface states were found to be exclusively back bond states, in contrast to the Si(001) surface, where dangling bond states also lie at the top of the valence band.
CT dose varies with both equipment related and operator dependent factors. Thermoluminescence dosimetry (TLD) was employed in two phantoms to investigate the variation in absorbed dose for head CT scans, using a cylindrical head CT dose phantom. Dose profiles were plotted and the computed tomography dose index (CTDI) calculated for a single 10 mm thick slice on 14 CT scanners. An anthropomorphic head phantom was also scanned from the base-of-skull to the vertex using 10/10 mm slices. The absorbed dose measured at the centre of the scan series is reported (Dmid). The mean CTDIw for the 14 scanners was 60.0 mGy, while the mean Dmid was 45.8 mGy. Dmid better represents the absorbed dose in human tissues. The CTDIw and Dmid normalized to mAs varied by up to a factor of 2.2 for the different scanners. Equipment related factors contribute to such variations. However, variations due to operator dependent factors such as the choice of exposure factors, scanning protocol and positioning technique must also be considered. When such factors are taken into account the absorbed dose received by the patient can vary considerably, by as much as 16.2 for lens dose. Increased awareness of the factors influencing CT dose and the standardization of scanning protocols is recommended.
The properties of an isolated dangling bond formed by the chemisorption of a single hydrogen atom on a dimer of the Ge(001) surface are investigated by first-principles density functional theory (DFT) calculations, and scanning tunneling microscopy (STM) measurements. Two stable atomic configurations of the Ge-Ge-H hemihydride with respect to the neighboring bare Ge-Ge dimers are predicted by DFT. For both configurations, the unpaired electron of the HGe(001) system is found to be delocalized over the surface, rendering the isolated dangling bond of the hemihydride unoccupied. However, local surface charge accumulation, such as may occur during STM imaging, leads to the localization of two electrons onto the hemihydride dangling bond. The calculated surface densities of states for one of the charged Ge-Ge-H hemihydride configurations are found to be in good agreement with atomic-resolution STM measurements on n-type Ge(001). Comparison with a Si-Si-H hemihydride of the Si(001) surface shows similarities in structural properties, but substantial differences in electronic properties.
There
is currently considerable interest in processes associated with the
modification of germanium surfaces due to their potential application
in electronic components such as MOSFETs. In this work, we combine
first-principles total energy and reaction path calculations to study
the initial stages of the oxidation of the Ge(001) surface due to
the adsorption of both atomic and molecular oxygen. The obtained results
provide real insights regarding several outstanding issues in the
literature, including the identification of key features observed
in the experimental studies. Three new structures for oxygen adsorption
on Ge(001) have been examined, at least one of which is predicted
to be likely to occur. Scanning Tunnelling Microscopy (STM) images
have also been simulated for comparison with the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.