Metal oxides with high dielectric constants have the potential to extend scaling of transistor gate capacitance beyond that of ultrathin silicon dioxide. However, during deposition of most metal oxides on silicon, an interfacial region of SiOx can form that limits the specific capacitance of the gate structure. We have examined the composition of this layer using high-resolution depth profiling of medium ion energy scattering combined with infrared spectroscopy and transmission electron microscopy. We find that the interfacial region is not pure SiO2, but is a complex depth-dependent ternary oxide of Si–Tax–Oy with a dielectric constant at least twice that of pure SiO2 as inferred from electrical measurements. High-temperature annealing crystallizes the Ta2O5 film and converts the composite oxide to a more pure SiO2 layer with a lower capacitance density. Using low postanneal temperatures, a stable composite oxide structure can be obtained with good electrical properties and an effective SiO2 thickness of less than 2 nm with ∼10 nm of composite oxide.
The dielectric constant in and conductivity sigma of undoped C(60) single crystals have been measured as a function of temperature, 10 K < T < 330 K, and frequency, 0.2 kilohertz < f < 100 kilohertz. On cooling below the first-order structural phase transition at 260 K, a Debye-like relaxational contribution to the dielectric response is observed, which requires the presence of permanent electric dipoles. The relaxation rate is thermally activated with a broad distribution of energies centered at 270 millielectron volts. The existence of a dipole moment in C(60) is unexpected, because it is precluded by symmetry for the pure ordered cubic phase. These data suggest that the high degree of frozen-in orientational disorder of the C(60) molecules is responsible for the existence of electric dipolar activity.
Ta 2 O 5 is a candidate for use in metal-oxide-metal ͑MOM͒ capacitors in several areas of silicon device technology. Understanding and controlling leakage current is critical for successful implementation of this material. We have studied thermal and photoconductive charge transport processes in Ta 2 O 5 MOM capacitors fabricated by anodization, reactive sputtering, and chemical vapor deposition. We find that the results from each of these three methods are similar if one compares films that have the same thickness and electrodes. Two types of leakage current are identified: ͑a͒ a transient current that charges the bulk states of the films and ͑b͒ a steady state activated process involving electron transport via a defect band. The transient process involves either tunneling conductivity into states near the Fermi energy or ion motion. The steady state process, seen most commonly in films Ͻ300 Å thick, is dominated by a large number of defects, ϳ10 19-10 20 cm Ϫ3 , located near the metal-oxide interfaces. The interior of thick Ta 2 O 5 films has a substantially reduced number of defects. Modest heating ͑300-400°C͒ of Ta 2 O 5 in contact with a reactive metal electrode such as Al, Ti, or Ta results in interfacial reactions and the diffusion of defects across the thickness of the film. These experiments show that successful integration of Ta 2 O 5 into semiconductor processing requires a better understanding of the impact of defects on the electrical characteristics and a better control of the metal-Ta 2 O 5 interface.
Electron scattering mechanisms in copper lines were investigated to understand the extendibility of copper interconnects when linewidth or thickness is less than the mean free path. Electron-beam lithography and a dual hard mask were used to produce interconnects with linewidths between 25 and 45 nm. Electron backscatter diffraction characterized grain structure. Temperature dependence of the line resistance determined resistivity, which was consistent with existing models for completely diffused surface scattering and line-edge roughness, with little contribution from grain boundary scattering. A simple analytical model was developed that describes resistivity from diffuse surface scattering and line-edge roughness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.