Our objectives were to evaluate the pattern of re-insemination, ovarian responses, and pregnancy per artificial insemination (P/AI) of cows submitted to different resynchronization of ovulation protocols. The base protocol started at 25 ± 3 d after artificial insemination (AI) and was as follows: GnRH, 7 and 8 d later PGF, GnRH 32 h after second PGF, and fixed timed AI (TAI) 16 to 18 h after GnRH. At 18 ± 3 d after AI, cows were randomly assigned to the G25 (n = 1,100) or NoG25 (n = 1,098) treatments. The protocol for G25 and NoG25 was the same, except that cows in NoG25 did not receive GnRH 25 ± 3 d after AI. At nonpregnancy diagnosis (NPD), 32 ± 3 d after AI, cows from G25 and NoG25 with a corpus luteum (CL) ≥15 mm in diameter and a follicle ≥10 mm completed the protocol (G25 CL = 272, NoG25 CL = 194), whereas cows from both treatments that did not meet these criteria received a modified Ovsynch protocol with P4 supplementation [controlled internal drug release insert plus GnRH, controlled internal drug release insert removal, and PGF 7 and 8 d later, GnRH 32 h after second PGF, and TAI 16 to 18 h after GnRH (G25 NoCL = 53, NoG25 NoCL = 78)]. Serum concentrations of progesterone (P4) were determined and ovarian ultrasonography was performed thrice weekly from 18 ± 3 d after AI until 1 d after TAI (G25 = 46, NoG25 = 44 cows). A greater percentage of NoG25 cows were re-inseminated at detected estrus (NoG25 = 53.5%, G25 = 44.6%), whereas more cows had a CL at NPD in G25 than NoG25 (83.7 and 71.3%). At 32 d after AI, P/AI was similar for G25 and NoG25 for inseminations at detected estrus (38.4 and 42.9%), TAI services for cows with no CL (40.4 and 36.7%), and for all services combined (39.6 and 39.0%). However, P/AI were greater for cows with a CL in G25 than NoG25 (40.6 and 32.8%) that received TAI. More cows ovulated spontaneously or in response to GnRH for the G25 than the NoG25 treatment (70 and 36%) but a similar proportion had an active follicle at NPD (G25 = 91% and NoG25 = 96%). The largest follicle diameter at NPD (G25 = 15.0 ± 0.4 mm, NoG25 = 16.5 ± 0.6 mm) and days since it reached ≥10 mm (G25 = 4.0 ± 0.3 d, NoG25 = 5.8 ± 0.6 d) were greater for the NoG25 than G25 treatment. For cows with a CL at NPD, CL regression after NPD, ovulation after TAI, and ovulatory follicle diameter did not differ. In conclusion, removing the first GnRH of a modified Resynch-25 protocol for cows with a CL at NPD and a modified Ovsynch protocol with P4 supplementation for cows without a CL at NPD resulted in a greater percentage of cows re-inseminated at detected estrus and a similar proportion of cows pregnant in spite of reduced P/AI for cows with a CL at NPD.
mg/dL, respectively. The numbers of plasma samples classified as hyperketonemia were 77, 44, and 57 in control, BCAA, and BCAAPG, respectively. The BCAA supplementation increased plasma urea nitrogen and milk urea nitrogen, free valine concentration in plasma, and decreased hyperketonemia events during the postpartum period.
Our objective was to compare the insemination dynamics and time to pregnancy for up to 100 d after the beginning of the artificial insemination period (AIP) for heifers managed with first artificial insemination (AI) service programs that relied primarily on insemination at detected estrus (AIE) after PGF 2α treatments, timed artificial insemination (TAI), or a combination of both. Holstein heifers were randomly assigned to receive first AI service with sex-selected semen after 368 ± 10 d of age with (1) AIE after synchronization of estrus with up to 3 PGF 2α treatments every 14 d starting on the first day of the AIP (PGF+AIE; n = 317). Heifers not AIE up to 9 d after the third PGF 2α received a 5-d Cosynch protocol with progesterone supplementation [GnRH + controlled internal drug release insert (CIDR)-5 d-CIDR removal and PGF 2α-3 d-GnRH and TAI] before TAI. Heifers detected in estrus from CIDR removal and PGF 2α until the day before TAI received AIE with no GnRH treatment; (2) 2 PGF 2α treatments 14 d apart with the second treatment at the beginning of the AIP (PGF+TAI; n = 334). Heifers received AIE for up to 9 d after the second PGF 2α treatment. Heifers not AIE received TAI after the 5-d Cosynch protocol and (3) TAI after the 5-d Cosynch protocol (ALL-TAI; n = 315). Heifers failing to conceive to a previous AI received a subsequent AI with conventional semen at detected estrus or TAI after the 5-d Cosynch protocol. Binomial outcomes were analyzed by logistic regression, whereas time to AI and pregnancy were analyzed with Cox's regression. The hazard of first AI up to 45 d of the AIP was greater for ALL-TAI than for PGF+AIE
Objectives were to evaluate the effect of feeding rumen-protected methionine (RPM) in pre-and postpartum total mix ration (TMR) on lactation performance and plasma AA concentrations in dairy cows. A total of 470 multiparous Holstein cows [235 cows at University of Wisconsin (UW) and 235 cows at Cornell University (CU)] were enrolled approximately 4 wk before parturition, housed in close-up dry cow and replicated lactation pens. Pens were randomly assigned to treatment diets (pre-and postpartum, respectively): UW control (CON) diet = 2.30 and 2.09% of Met as percentage of metabolizable protein (MP) and RPM diet = 2.83 and 2.58% of Met as MP; CU CON = 2.22 and 2.19% of Met as percentage of MP, and CU RPM = 2.85 and 2.65% of Met as percentage of MP. Treatments were evaluated until 112 ± 3 d in milk (DIM). Milk yield was recorded daily. Milk samples were collected at wk 1 and 2 of lactation, and then every other week, and analyzed for milk composition. For lactation pens, dry matter intake (DMI) was recorded daily. Body weight and body condition score were determined from 4 ± 3 DIM and parturition until 39 ± 3 and 49 DIM, respectively. Plasma AA concentrations were evaluated within 3 h after feeding during the periparturient period [d −7 (±4), 0, 7 (±1), 14 (±1), and 21 (±1); n = 225]. In addition, plasma AA concentrations were evaluated (every 3 h for 24 h) after feeding in cows at 76 ± 8 DIM (n = 16) and within 3 h after feeding in cows at 80 ± 3 DIM (n = 72). The RPM treatment had no effect on DMI (27.9 vs. 28.0 kg/d) or milk yield (48.7 vs. 49.2 kg/d) for RPM and CON, respectively. Cows fed the RPM treat-ment had increased milk protein concentration (3.07 vs. 2.95%) and yield (1.48 vs. 1.43 kg/d), and milk fat concentration (3.87 vs. 3.77%), although milk fat yield did not differ. Plasma Met concentrations tended to be greater for cows fed RPM at 7 d before parturition (25.9 vs. 22.9 µM), did not differ at parturition (22.0 vs. 20.4 µM), and were increased on d 7 (31.0 vs. 21.2 µM) and remained greater with consistent concentrations until d 21 postpartum (d 14: 30.5 vs. 19.0 µM; d 21: 31.0 vs. 17.8 µM). However, feeding RPM decreased Leu, Val, Asn, and Ser (d 7, 14, and 21) and Tyr (d 14). At a later stage in lactation, plasma Met was increased for RPM cows (34.4 vs. 16.7 µM) consistently throughout the day, with no changes in other AA. Substantial variation was detected for plasma Met concentration (range: RPM = 8.9-63.3 µM; CON = 7.8-28.8 µM) among cows [coefficient of variation (CV) > 28%] and within cow during the day (CV: 10.5-27.1%). In conclusion, feeding RPM increased plasma Met concentration and improved lactation performance via increased milk protein production.
Our objectives were to evaluate the performance of an ear-attached automated estrus detection (AED) system (Smartbow; Zoetis) that monitored physical activity and rumination time, and to characterize AED system estrus alert features (i.e., timing and duration). Lactating Holstein cows (n = 216) commenced a protocol for the synchronization of estrus at 50 ± 3 DIM or 18 ± 3 d after artificial insemination. For 7 d after induction of luteolysis with PGF 2α (d 0), we used visual observation of estrous behavior (30 min, 2 times per day) and data from an automated mounting behavior monitoring system based on a pressure-activated tail-head sensor (HeatWatch; Cowchips LLC) as a reference test (RTE) to detect behavioral estrus. Concomitantly, estrus alerts and their features were collected from the AED system. Progesterone levels confirmed luteal regression, and transrectal ultrasonography confirmed the occurrence and timing of ovulation. Performance metrics for the AED system were estimated with PROC FREQ in SAS, using the RTE or ovulation only as a reference. Performance was also estimated after the removal of cows with a discrepancy between the RTE and ovulation. Continuous outcomes with or without repeated measurements were evaluated by ANOVA using PROC MIXED in SAS. Based on the RTE, 86.6% (n = 187) of the cows presented estrus and ovulated; 1.4% (n = 3) presented estrus and did not ovulate; 6.4% (n = 14) did not present estrus but ovulated; and 5.6% (n = 12) did not present estrus or ovulation. We found no difference in the proportion of cows detected in estrus and with ovulation for the AED system (83.4%) and the RTE (86.6%). Compared with estrus events as detected by the RTE, sensitivity for the AED was 91.6% (95% CI: 87.6-95.5) and specificity was 69.2% (95% CI: 51.5-87.0). Using ovulation as reference, sensitiv-ity was 89.6% (95% CI: 85.3-93.8) and specificity was 86.7% (95% CI 69.5-100). For all cows with agreement between the RTE and ovulation, sensitivity was 92.5% (95% CI: 88.7-96.3) and specificity was 91.7% (95% CI: 76.0-100). The mean (±SD) interval from induction of luteolysis to estrus alerts, estrus alert duration, and the onset of estrus alerts to ovulation interval were 72.2 ± 18.1, 13.5 ± 3.8, and 23.8 ± 7.1 h, respectively. We concluded that an ear-attached AED system that monitored physical activity and rumination time was effective at detecting cows in estrus and generated few false positive alerts when accounting for ovulation, cow physiological limitations, and the limitations of the RTE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.