Cutting-edge technologies of stretchable, skin-mountable, and wearable electronics have attracted tremendous attention recently due to their very wide applications and promising performances. One direction of particular interest is to investigate novel properties in stretchable electronics by exploring multifunctional materials. Here, we report an integrated strain sensing system that is highly stretchable, rehealable, fully recyclable, and reconfigurable. This system consists of dynamic covalent thermoset polyimine as the moldable substrate and encapsulation, eutectic liquid metal alloy as the strain sensing unit and interconnects, and off-the-shelf chip components for measuring and magnifying functions. The device can be attached on different parts of the human body for accurately monitoring joint motion and respiration. Such a strain sensing system provides a reliable, economical, and ecofriendly solution to wearable technologies, with wide applications in health care, prosthetics, robotics, and biomedical devices.
Based on an elastic beam model, the instability of multiwalled carbon nanotubes (MWCNTs) induced by the moving fluid inside is investigated. At critical flow velocities, the MWCNTs become unstable and undergo pitchfork bifurcation and subsequently Hopf bifurcation. These critical velocities are found to increase very quickly with respect to decreasing inner radius and are inversely proportional to the length-toouter-radius ratio. The effect of the van der Waals (vdW) interaction between tubes is investigated and it is found that the vdW interaction can enhance the stability of MWCNTs in general, but the vdW interaction reduces the stability capacity of MWCNTs with very small inner radius.
This paper deals with an elastic orthotropic inhomogeneity problem due to non-uniform eigenstrains. The specific form of the distribution of eigenstrains is assumed to be a linear function in Cartesian coordinates of the points of the inhomogeneity. Based on the polynomial conservation theorem, the induced stress field inside the inhomogeneity which is also linear, is determined by the evaluation of 10 unknown real coefficients. These coefficients are derived analytically based on the principle of minimum potential energy of the elastic inhomogeneity/matrix system together with the complex function method and conformal transformation. The resulting stress field in the inhomogeneity is verified using the continuity conditions for the normal and shear stresses on the boundary. In addition, the present analytic solution can be reduced to known results for the case of uniform eigenstrain.
With the increasing use of fibre composites in applications such as cryogenic liquid hydrogen tanks and repair/retrofitting of bridges, the diffusion and freezing of moisture to form ice is an issue of growing importance. The volumetric expansion of water when it freezes to form ice results in stress concentrations at the inclusion tip that may synergistically interact with the residual tensile stresses in a laminate at low temperatures to initiate a crack. In addition, understanding the long-term effect of daily and/or seasonal freeze-thaw cycling on crack growth in a laminate is of vital importance for structural durability. The objective of this paper is to establish a theoretical framework for the calculation of the stress intensity factor (KI) of a pre-existing crack in a composite structure due to the phase transition of trapped moisture. The constrained volume expansion of trapped moisture due to freezing is postulated to be the crack driving force. The principle of minimum strain energy is employed to calculate the elastic field within an orthotropic laminate containing an idealized elliptical elastic inclusion in the form of ice. It is postulated that a slender elliptical elastic inclusion can be used to approximate the stress field at the crack face, which can subsequently be used to calculate the stress intensity factor, KI, for the crack. The verification of the analytical model predictions and some potential applications will be published in a separate paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.