Hydroxypropyl methylcellulose (HPMC)-coated papers without plasticizer and plasticized with polyols were prepared, and the effects of coating weight, different plasticizers (glycerol (GLY), sorbitol (SOR), and polyethylene glycol (PEG)), and plasticizer contents (20% to 50%) on the physical and mechanical properties of the resulting biopolymer-coated papers were studied. Coating weight was the most important factor affecting mechanical properties. Conversely, increasing coating weight led to a decrease in gloss and to an increase in tensile strength (TS), elongation at break (%E), and tearing resistance of coated papers. The application of unplasticized HPMC coatings (3 g/m 2) on paper reduced water vapor permeability (WVP) and water absorption capacity by 25% as compared with uncoated paper. All plasticizers significantly (p < 0.05) increased WVP and Cobb 60 values of the films. With the exception of PEG, no effect was found with plasticizers on TS and %E of coated papers compared with those without plasticizer. HPMC-coated papers with PEG as a plasticizer showed significantly lower TS and higher %E and tearing resistance than the other plasticized films (p < 0.05). HPMC coating improved tensile properties and tearing resistance of paper and could be regarded as a reinforcement layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.