The extent of systemic exposure following external therapeutic administration of permethrin is very low compared with doses used for preclinical toxicity studies, and elimination is virtually complete after 1 week. These data provide the pharmacokinetic basis for the clinical safety of topical permethrin.
The application of a simple, rapid, and inexpensive colorimetric growth assay was tested for human epidermal cells subcultured in uncoated plastic dishes. Cell layers were incubated with a crystal violet (CV) solution (0.2% with ethanol 2% in 0.5 M Tris-Cl buffer, pH 7.8) for 10 min at room temperature. After rinsing with 0.5 M Tris-Cl (pH 7.8) the cell layer was dried and decolorized with a sodium-dodecylsulfate solution (0.5% with ethanol 50% in 0.5 M Tris-Cl, pH 7.8) for 60 min at 37 degrees C. The extinction of the supernatant was read at the absorption maximum of 586 nm. The protein content of attached cells as classical parameter for quantifying cell growth was strongly related to CV extinction with a correlation coefficient of r = 0.98. Furthermore, the subcellular protein binding qualities of CV were analyzed. The water-soluble protein fraction of cultured epidermal cells was separated by sodium-dodecylsulfate polyacrylamide gel electrophoresis and stained with CV. We found a staining pattern which was qualitatively very similar to that of Coomassie blue, however less intense. Keratin electrophoresis revealed an affinity of CV to the 48, 50, and 56 kD cytokeratins. In conclusion, this CV assay is a reliable and simple method for the monitoring of epidermal cell growth in cultures.
The immortalized human keratinocyte cell line HaCaT was used to assess the effect of interferon-gamma (IFN-gamma) on expression of keratin K17. Both IFN-gamma and K17 have been implicated in the pathophysiology of psoriasis. Western and quantitative enzyme-linked immunosorbent assay analyses demonstrated increasing induction of K17 protein by 48 h exposure to IFN-gamma at concentrations of 10, 50, and 250 U/ml. At 50 U/ml IFN-gamma, immunohistochemical analysis revealed numerous K17-positive foci, whereas in situ hybridization demonstrated K17 message in the majority of cells. In addition, at low (5 U/ml) concentrations of IFN-gamma, cell proliferation and protein synthesis decreased, as determined by 3H-thymidine labeling and 14C-amino acid uptake. These data suggest that aberrant K17 expression observed in psoriatic lesions may be a consequence of IFN-gamma overexpression, and that the HaCaT cell line may be a useful in vitro model system to elucidate the underlying mechanisms.
To extend our initial observations that recombinant gamma-interferon (r gamma IFN) influences the growth and differentiation of normal cultured human keratinocytes, we studied the electron microscopic changes induced by r gamma IFN. Treatment of cultured human keratinocytes with 10(3) units/ml (7.1 nM) of r gamma IFN produced a shift toward an increasing percentage of attached cells that had a mature-type, differentiated appearance rather than a basal type of proliferating cell, as observed in control, untreated cultures. This report extends the number of cell types that can be influenced by r gamma IFN at the ultrastructural level and supports the notion that r gamma IFN can influence both growth and maturation of normal cultured human keratinocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.