V 393 Scorpii is a bright Galactic Double Periodic Variable showing a long photometric cycle of ≈253 d. We present new VIJK photometric time series for V 393 Scorpii along with the analysis of All Sky Automated Survey (ASAS) V-band photometry. We disentangled all light curves into the orbital and long-cycle components. The ASAS V-band orbital light curve was modelled with two stellar components plus a circumprimary optically thick disc assuming a semi-detached configuration. We present the results of this calculation, giving physical parameters for the stars and the disc, along with general system dimensions. Our results are in close agreement with those previously found by Mennickent et al. from infrared (IR) spectroscopy and the modelling of the spectral energy distribution. The stability of the orbital light curve suggests that the stellar plus disc configuration remains stable during the long cycle. Therefore, the long cycle should be produced by an additional variable and not-eclipsed emitting structure. We discuss the evolutionary stage of the system finding the best match with one of the evolutionary models of van Rensbergen et al. According to these models, the system is found to be after an episode of fast mass exchange that transferred 4 M from the donor to the gainer in a period of 400 000 years. We argue that a significant fraction of this mass has not been accreted by the gainer but remains in an optically thick massive (∼2 M ) disc-like surrounding pseudo-photosphere whose luminosity is not driven by viscosity but probably by reprocessed stellar radiation. Finally, we provide the result of our search for Galactic Double Periodic Variables and briefly discuss the outliers β Lyr and RX Cas.
Context. Recent progress in the seismic interpretation of field β Cep stars has resulted in improvements of the physics in the stellar structure and evolution models of massive stars. Further asteroseismic constraints can be obtained from studying ensembles of stars in a young open cluster, which all have similar age, distance and chemical composition. Aims. To improve our comprehension of the β Cep stars, we studied the young open cluster NGC 884 to discover new B-type pulsators, besides the two known β Cep stars, and other variable stars.Methods. An extensive multi-site campaign was set up to gather accurate CCD photometry time series in four filters (U, B, V, I) of a field of NGC 884. Fifteen different instruments collected almost 77 500 CCD images in 1286 h. The images were calibrated and reduced to transform the CCD frames into interpretable differential light curves. Various variability indicators and frequency analyses were applied to detect variable stars in the field. Absolute photometry was taken to deduce some general cluster and stellar properties. Results. We achieved an accuracy for the brightest stars of 5.7 mmag in V, 6.9 mmag in B, 5.0 mmag in I and 5.3 mmag in U. The noise level in the amplitude spectra is 50 μmag in the V band. Our campaign confirms the previously known pulsators, and we report more than one hundred new multi-and mono-periodic B-, A-and F-type stars. Their interpretation in terms of classical instability domains is not straightforward, pointing to imperfections in theoretical instability computations. In addition, we have discovered six new eclipsing binaries and four candidates as well as other irregular variable stars in the observed field.Key words. open clusters and associations: individual: NGC 884 -techniques: photometric -stars: variables: generalstars: oscillations -binaries: eclipsingThe photometric data of the variable stars are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
We investigate the nature of OGLE 05155332−6925581, one of the brightest members of the enigmatic group of double periodic variables (DPVs) recently found in the Magellanic Clouds. The modelling of archival orbital light curves (LCs), along with the analysis of the radial velocities (RVs) suggest that this object is a semidetached binary with the less massive star transferring matter to the more massive and less evolved star, in an Algol-like configuration. We find evidence for additional orbital variability and Hα emission, likely caused by an accretion disc around the primary star. As in the case of β Lyr the circumprimary disc seems to be more luminous than the primary, but we do not detect orbital period changes. We find that the LC follows a loop in the colour-magnitude diagram during the long cycle; the system is redder when brighter and the rising phase is bluer than during decline. Infrared excess is also present. The source of the long-term periodicity is not eclipsed, indicating its circumbinary origin. Strong asymmetries, discrete absorption components (DACs) and a γ shift are new and essential observational properties in the infrared H I lines. The DACs strength and RV follow a saw-teeth pattern during the orbital cycle. We suggest that the system experiences supercycles of mass outflow feeding a circumbinary disc. Mass exchange and mass loss could produce comparable but opposite effects in the orbital period on a long time-scale, resulting in a quasi-constancy of this parameter.
We have analysed high-resolution spectra of 28 A and 22 F stars in the Kepler field, observed with the FIES spectrograph at the Nordic Optical Telescope. We provide spectral types, atmospheric parameters and chemical abundances for 50 stars. Balmer, Fe i, and Fe ii lines were used to derive effective temperatures, surface gravities, and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The stars analysed include chemically peculiar stars of the Am and λ Boo types, as well as stars with approximately solar chemical abundances. The wide distribution of projected rotational velocity, v sin i, is typical for A and F stars. The microturbulence velocities obtained are typical for stars in the observed temperature and surface gravity ranges. Moreover, we affirm the results of Niemczura et al., that Am stars do not have systematically higher microturbulent velocities than normal stars of the same temperature.
Context. Heartbeat stars are eccentric binaries that exhibit a characteristic shape of brightness changes close to the periastron passage, primarily caused by a variable tidal distortion of the components. Variable tidal potential can drive tidally excited oscillations (TEOs), which are usually gravity modes. Studies of heartbeat stars and TEOs open up new possibilities for probing the interiors of massive stars. There are only a few massive (masses of components ≳2 M⊙) systems of this type that are known thus far. Aims. Using TESS data from the first 16 sectors, we searched for new massive heartbeat stars and TEOs using a sample of over 300 eccentric spectroscopic binaries. Methods. We analysed 2 min and 30 min cadence TESS data. Then we fitted Kumar’s analytical model to the light curves of stars showing heartbeats and performed a times-series analysis of the residuals searching for TEOs and periodic intrinsic variability. Results. We found 20 massive heartbeat systems, of which 7 exhibit TEOs. The TEOs occur at harmonics of orbital frequencies in the range between 3 and 36, with the median value equal to 9, which is lower than those in known Kepler systems with TEOs. The most massive system in this sample is the quadruple star HD 5980, a member of the Small Magellanic Cloud. With a total mass of ∼150 M⊙ it is the most massive system showing a heartbeat. Six stars in the sample of the new heartbeat stars are eclipsing. A comparison of the parameters derived from fitting Kumar’s model and from light-curve modelling shows that Kumar’s model does not provide reliable parameters. In other words, the orbital parameters can be reliably derived from fitting heartbeat light curves only if the model includes all proximity effects. Finally, intrinsic pulsations of β Cep, SPB, δ Sct, and γ Dor-type were found in nine heartbeat systems. This opens an interesting possibility for studies of pulsation-binarity interaction and the co-existence of forced and self-excited oscillations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.