A serine proteinase was isolated from fruits of Maclura pomifera (Raf.) Schneid. by affinity chromatography on bacitracin-containing sorbents and gel-filtration. The enzyme, named macluralisin, is a glycoprotein with a molecular mass of 65 kDa; its protein moiety corresponds to a molecular mass of 50 kDa. The substrate specificity of macluralisin towards synthetic peptides and insulin B-chain is similar to that of cucumisin, a subtilisin-like proteinase from melon fruit. The enzyme is completely inhibited by diisopropylfluorophosphate. Its amino-acid composition resembles that of a serine proteinase isolated from the Cucurbitaceae. The N-terminal sequence has 33% of its residues identical to those of the sequence of fungal subtilisin-like proteinase K. Hence, Maclura pomifera serine proteinase belongs to the subtilisin family, which seems to be broadly distributed in the plant kingdom.
Latex of dandelion roots contains a serine proteinase that hydrolyzes a chromogenic peptide substrate Glp-Ala-AlaLeu-pNA optimally at pH 8.0. Maximal activity of the proteinase in the roots is attained in April, at the beginning of plant development after the winter period. The protease was isolated by ammonium sulfate precipitation of the root extract followed by affinity chromatography on a Sepharose-Ala-AlaLeu-mrp and gel filtration on Superose 6R performed in FPLC regime. Pure serine proteinase named taraxalisin was inactivated by specific inhibitors of serine proteinases, diisopropylfluorophosphate (DFP) and phenylmethylsulfonylfluoride (PMSF). Its molecular mass is 67 kDa and pI 4.5. pH stability range is 6^9 in the presence of 2 mM Ca P+ , temperature optimum is at 40³C; K m =0.37 þ 0.06 mM. The substrate specificity of taraxalisin towards synthetic peptides and insulin B-chain is comparable with that of two other subtilisin-like serine proteinases, cucumisin and macluralisin. The taraxalisin N-terminal sequence traced for 15 residues revealed 40% coinciding residues when aligned with that of subtilisin Carlsberg.z 1998 Federation of European Biochemical Societies.
A homogeneous serine proteinase secreted by the extreme halophilic bacterium Halobacterium mediterranei 1538 was isolated by affinity chromatography on bacitracin-Sepharose with a yield of 48% (260-fold purification). The enzyme reveals an optimum for pyroglutamyl-Ala-Ala-Leu p-nitroanilide hydrolysis at pH 8.0-8.5 (Km 0.14 mM; k(cat). 36.9 s-1). Its activity increases linearly with NaCl concentration over the range 2-5 M. The substrate specificity of the enzyme is comparable with that of secretory subtilisins, the extent of protein degradation approaching that attained with proteinase K. The enzyme has a molecular mass of 41 kDa and a pI of 7.5. The N-terminal sequence of H. mediterranei serine proteinase reveals a 50% identity with that of Thermoactinomyces vulgaris serine proteinases, indicating that the enzyme belongs to the subtilisin family. Hence the serine proteinase secreted by the halophilic bacterium should be considered as a functional analogue, and a structural homologue, of eubacterial serine proteinases (subtilisins).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.